In this case study we survey the historical development of $\mathrm{Lip}(\gamma)$ functions, beginning with the work of Hassler Whitney from the 1930s and ending with some of the recent properties established by Terry Lyons and Andrew McLeod that are particul
12:00
Non-commutative derived geometry
Abstract
I will describe a non-commutative version of the Zariski topology and explain how to use it to produce a functorial spectrum for all derived rings. If time permits I will give some examples and show how a weak form of Gelfand duality for non-commutative rings can be deduced from this. This work is in collaboration with Simone Murro and Matteo Capoferri.
14:15
Towards a gauge-theoretic approximation of codimension-three area
Abstract
In the last three decades, a fruitful way to approximate the area functional in low codimension is to interpret submanifolds as the nodal sets of maps (or sections of vector bundles), critical for suitable physical energies or well-known lagrangians from gauge theory. Inspired by the situation in codimension two, where the abelian Higgs model has provided a successful framework, we look at the non-abelian SU(2) model as a natural candidate in codimension three. In this talk we will survey the new key difficulties and some recent partial results, including a joint work with D. Parise and D. Stern and another result by Y. Li.
12:00
Aggregation-diffusion equations with saturation
Abstract
On this talk we will focus on the family of aggregation-diffusion equations
$$\frac{\partial \rho}{\partial t} = \mathrm{div}\left(\mathrm{m}(\rho)\nabla (U'(\rho) + V) \right).$$
Here, $\mathrm{m}(s)$ represents a continuous and compactly supported nonlinear mobility (saturation) not necessarily concave. $U$ corresponds to the diffusive potential and includes all the porous medium cases, i.e. $U(s) = \frac{1}{m-1} s^m$ for $m > 0$ or $U(s) = s \log (s)$ if $m = 1$. $V$ corresponds to the attractive potential and it is such that $V \geq 0$, $V \in W^{2, \infty}$.
Taking advantage of a family of approximating problems, we show the existence of $C_0$-semigroups of $L^1$ contractions. We study the $\omega$-limit of the problem, its most relevant properties, and the appearance of free boundaries in the long-time behaviour. Furthermore, since this problem has a formal gradient-flow structure, we discuss the local/global minimisers of the corresponding free energy in the natural topology related to the set of initial data for the $L^\infty$-constrained gradient flow of probability densities. Finally, we explore the properties of a corresponding implicit finite volume scheme introduced by Bailo, Carrillo and Hu.
The talk presents joint work with Prof. J.A. Carrillo and Prof. D. Gómez-Castro.
quenching with AdS/CFT