Thu, 28 Apr 2022

14:00 - 15:00
L3

An SDP approach for tensor product approximation of linear operators on matrix spaces

Andre Uschmajew
(Max Planck Institute Leipzig)
Abstract

Tensor structured linear operators play an important role in matrix equations and low-rank modelling. Motivated by this we consider the problem of approximating a matrix by a sum of Kronecker products. It is known that an optimal approximation in Frobenius norm can be obtained from the singular value decomposition of a rearranged matrix, but when the goal is to approximate the matrix as a linear map, an operator norm would be a more appropriate error measure. We present an alternating optimization approach for the corresponding approximation problem in spectral norm that is based on semidefinite programming, and report on its practical performance for small examples.
This is joint work with Venkat Chandrasekaran and Mareike Dressler.

Thu, 12 May 2022

14:00 - 15:00
L3

Direct solvers for elliptic PDEs

Gunnar Martinsson
(Univerity of Texas at Austin)
Abstract

That the linear systems arising upon the discretization of elliptic PDEs can be solved efficiently is well-known, and iterative solvers that often attain linear complexity (multigrid, Krylov methods, etc) have proven very successful. Interestingly, it has recently been demonstrated that it is often possible to directly compute an approximate inverse to the coefficient matrix in linear (or close to linear) time. The talk will argue that such direct solvers have several compelling qualities, including improved stability and robustness, the ability to solve certain problems that have remained intractable to iterative methods, and dramatic improvements in speed in certain environments.

After a general introduction to the field, particular attention will be paid to a set of recently developed randomized algorithms that construct data sparse representations of large dense matrices that arise in scientific computations. These algorithms are entirely black box, and interact with the linear operator to be compressed only via the matrix-vector multiplication.

The nascent coffee ring with arbitrary droplet contact set: an asymptotic analysis
Oliver, J Vella, D Moore, M Journal of Fluid Mechanics
Subscribe to