Cohomological χ-independence for Higgs bundles and Gopakumar-Vafa invariants
Abstract
In this talk, I will introduce the BPS cohomology of the moduli space of Higgs bundles on a smooth projective curve of rank r and degree d using cohomological Donaldson-Thomas theory. The BPS cohomology and the intersection cohomology coincide when r and d are coprime, but they are different in general. We will see that the BPS cohomology does not depend on d. This is a generalization of the Hausel-Thaddeus conjecture to non-coprime case. I will also explain that Toda's χ-independence conjecture (and hence the strong rationality conjecture) for local curves can be proved in the same manner. This talk is based on a joint work with Naoki Koseki and another joint work with Naruki Masuda.