Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Tue, 30 Jun 2026 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2026

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2026. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Mon, 01 Jun 2026 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until June 2026.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Mon, 02 Feb 2026

17:00 - 18:00
L4

Mean-field limits of non-exchangeable interacting diffusions on co-evolutionary networks

Prof. David Poyato
(University of Granada)
Abstract
Multi-agent systems are ubiquitous in Science, and they can be regarded as large systems of interacting particles with the ability to generate large-scale self-organized structures from simple local interactions rules between each agent and its neighbors. Since the size of the system is typically huge, an important question is to connect the microscopic and macroscopic scales in terms of mean-field limits, which is a fundamental problem in Physics and Mathematics closely related to Hilbert Sixth Problem. In most real-life applications, the communication between agents is not based on uniform all-to-all couplings, but on highly heterogeneous connections, and this makes agents distinguishable. However, the classical strategies based on mean-field limits are strongly based on the crucial assumption that agents are indistinguishable, and it therefore does not apply to our distinguishable setting, so that we need substantially new ideas.
 
In this talk I will present a recent work about the rigorous derivation of the mean-field limit for systems of non-exchangeable interacting diffusions on co-evolutionary networks. While previous research has primarily addressed continuum limits or systems with linear weight dynamics, our work overcomes these restrictions. The main challenge arises from the coupling between the network weight dynamics and the agents' states, which results in a non-Markovian dynamics where the system’s future depends on its entire history. Consequently, the mean-field limit is not described by a partial differential equation, but by a system of non-Markovian stochastic integrodifferential equations. A second difficulty stems from the non-linear weight dynamics, which requires a careful choice for the limiting network structure. Due to the limitations of the classical theory of graphons (Lovász and Szegedy, 2006) in handling non-linearities, we employ K-graphons (Lovász and Szegedy, 2010), also termed probability-graphons (Abraham, Delmas, and Weibel, 2025). This framework pro seems to provide a natural topology that is compatible with such non-linearities.
 
This is a joint work with Julián Cabrera-Nyst (University of Granada).
Tue, 03 Feb 2026

14:00 - 15:00
C3

Exploring partition diversity in complex networks

Dr. Lena Mangold
(IT:U Interdisciplinary Transformation University Austria)
Abstract

Partition diversity refers to the concept that for some networks there may be multiple, similarly plausible ways to group the nodes, rather than one single best partition. In this talk, I will present two projects that address this idea from different but complementary angles. The first introduces the benchmark stochastic cross-block model (SCBM), a generative model designed to create synthetic networks with two distinct 'ground-truth' partitions. This allows us to study the extent to which existing methods for partition detection are able to reveal the coexistence of multiple underlying structures. The second project builds on this benchmark and paves the way for a Bayesian inference framework to directly detect coexisting partitions in empirical networks. By formulating this model as a microcanonical variant of the SCBM, we can evaluate how well it fits a given network compared to existing models. We find that our method more reliably detects partition diversity in synthetic networks with planted coexisting partitions, compared to methods designed to detect a single optimal partition. Together, the two projects contribute to a broader understanding of partition diversity by offering tools to explore the ambiguity of network structure.

Tue, 03 Feb 2026

14:00 - 15:00
L4

Cycle-factors of regular graphs via entropy

Lukas Michel
(University of Oxford)
Abstract

It is a classical result that a random permutation of $n$ elements has, on average, about $\log n$ cycles. We generalise this fact to all directed $d$-regular graphs on $n$ vertices by showing that, on average, a random cycle-factor of such a graph has $\mathcal{O}((n\log d)/d)$ cycles. This is tight up to the constant factor and improves the best previous bound of the form $\mathcal{O}({n/\sqrt{\log d}})$ due to Vishnoi. It also yields randomised polynomial-time algorithms for finding such a cycle-factor and for finding a tour of length $(1+\mathcal{O}((\log d)/d)) \cdot n$ if the graph is connected. The latter result makes progress on a restriction of the Traveling Salesman Problem to regular graphs, a problem studied by Vishnoi and by Feige, Ravi, and Singh. Our proof uses the language of entropy to exploit the fact that the upper and lower bounds on the number of perfect matchings in regular bipartite graphs are extremely close.

This talk is based on joint work with Micha Christoph, Nemanja Draganić, António Girão, Eoin Hurley, and Alp Müyesser.

Tue, 03 Feb 2026
15:00
L6

Divergence in groups with micro-supported actions

Letizia Issini
Abstract
The divergence of a group is a quasi-isometry invariant that measures how difficult it is to connect two points while avoiding a ball around the identity. It is easy to see that it is linear for direct products and deduce the same result for branch groups (a class of groups acting on rooted trees, for example the Grigorchuk group). I will discuss divergence for weakly branch groups, in particular the Basilica group. I will also present a generalisation for certain groups admitting a micro-supported action on a Hausdorff topological space, i.e containing elements with arbitrarily small support.
Joint work in progress with D. Francoeur and T. Nagnibeda
Tue, 03 Feb 2026
15:30

Foundations for derived analytic and differential geometry

Kobi Kremnitzer
((Mathematical Institute University of Oxford))
Abstract

In this talk I will describe how bornological spaces give a foundation for derived geometries. This works over any Banach ring allowing to define analytic and differential geometry over the integers. I will discuss applications of this approach such as the representability of certain moduli spaces and Galois actions on the cohomology of differetiable manifolds admitting a \Q-form.

Tue, 03 Feb 2026
16:00
C3

Horn's Problem and free probability

Samuel Johnston
(KCL)
Abstract

In 1962, Horn raised the following problem: Let A and B be n-by-n Hermitian matrices with respective eigenvalues a_1,...,a_n and b_1,...,b_n. What can we say about the possible eigenvalues c_1,...,c_n of A + B?

The deterministic perspective is that the set of possible values for c_1,...,c_n are described by a collection of inequalities known as the Horn inequalities.

Free probability offers the following alternative perspective on the problem: if (A_n) and (B_n) are independent sequences of n-by-n random matrices with empirical spectra converging to probability measures mu and nu respectively, then the random empirical spectrum of A_n + B_n converges to the free convolution of mu and nu.

But how are these two perspectives related?

In this talk Samuel Johnston will discuss approaches to free probability that bridge between the two perspectives. More broadly, Samuel will discuss how the fundamental operations of free probability (such as free convolution and free compression) arise out of statistical physics mechanics of corresponding finite representation theory objects (hives, Gelfand-Tsetlin patterns, characteristic polynomials, Horn inequalities, permutations etc).

This talk is based on joint work with Octavio Arizmendi (CIMAT, Mexico), Colin McSWiggen (Academia Sinica, Taiwan) and Joscha Prochno (Passau, Germany).

Tue, 03 Feb 2026
16:00
L6

L-functions and conformal field theory (Joint String/RMT seminar, SPECIAL TIME 4pm)

Dalmil Mazáč
(Institut de Physique Théorique of CEA-Saclay)
Abstract

Recently, a close parallel emerged between conformal field theory in general dimension and the theory of automorphic forms. I will review this connection and explain how it can be leveraged to make rigorous progress on central open problems of number theory, using methods borrowed from the conformal bootstrap. In particular, I will use the crossing equation to prove new subconvex bounds on L-functions. Based on work with Adve, Bonifacio, Kravchuk, Pal, Radcliffe, and Rogelberg: https://arxiv.org/abs/2508.20576.

Tue, 03 Feb 2026
16:00
L6

(joint seminar with String Theory) L-functions and conformal field theory.

Dalimil Mazáč
(Institut de Physique Théorique of CEA-Saclay)
Abstract
Recently, a close parallel emerged between conformal field theory in general dimension and the theory of automorphic forms. I will review this connection and explain how it can be leveraged to make rigorous progress on central open problems of number theory, using methods borrowed from the conformal bootstrap. In particular, I will use the crossing equation to prove new subconvex bounds on L-functions. Based on work with Adve, Bonifacio, Kravchuk, Pal, Radcliffe, and Rogelberg: https://arxiv.org/abs/2508.20576.

 

Wed, 04 Feb 2026

11:00 - 13:00
L4

Scaling limit of a weakly asymmetric simple exclusion process in the framework of regularity structures

Prof. Hendrik Weber
(University of Münster)
Abstract
We prove that a parabolically rescaled and suitably renormalised height function of a weakly asymmetric simple exclusion process on a circle converges to the Cole-Hopf solution of the KPZ equation. This is an analogue of the celebrated result by Bertini and Giacomin from 1997 for the exclusion process on a circle with any particles density. The main goal of this article is to analyse the interacting particle system using the framework of regularity structures without applying the Gärtner transformation, a discrete version of the Cole-Hopf transformation which linearises the KPZ equation. 
 
Our analysis relies on discretisation framework for regularity structures developed by Erhard and Hairer [AIHP 2019] as well as estimates for iterated integrals with respect to jump martingales derived by Grazieschi, Matetski and Weber [PTRF 2025]. The main technical challenge addressed in this work is the renormalisation procedure which requires a subtle analysis of regularity preserving discrete convolution operators. 
 
Joint work with R. Huang (Münster / now Pisa) and K. Matetski (Michigan State).


 

Wed, 04 Feb 2026
12:45
TCC VC

Cluster Algebras and Their Applications

Adam Kmec
Abstract

First introduced by Fomin and Zelevinsky, cluster algebras are commutative rings that have many combinatorial properties. They have had many applications to both mathematics and physics. In this talk, I will first introduce cluster algebras and explore some of their properties. I will then move on to their applications, starting with dilogarithm identities and then moving to integrable systems and the thermodynamic Bethe ansatz (TBA). Time permitting, I will connect some of these ideas to the ODE/IM correspondence. 

Wed, 04 Feb 2026

16:00 - 17:00
L6

Some Computational 4-Manifold Topology

Rhuaidi Burke
(University of Oxford )
Abstract

Dimension 4 is the first dimension in which exotic smooth manifold pairs appear — manifolds which are topologically the same but for which there is no smooth deformation of one into the other. On the other hand, smooth and PL manifolds (manifolds which can be described discretely) do coincide in dimension 4. Despite this, there has been comparatively little work done towards gaining an understanding of smooth 4-manifolds from the discrete and algorithmic perspective. The aim of this talk will be to give a gentle introduction to some of the tools, techniques, and ideas, which inform a computational approach to 4-manifold topology.

Thu, 05 Feb 2026

12:00 - 13:00
L3

Fracture, by design: topology-programmed damage in Maxwell lattices

Marcelo Dias
(University of Edinburgh)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

Fracture is usually treated as an outcome to be avoided; here we see it as something we may write into a lattice's microstructure. Maxwell lattices sit at the edge of mechanical stability, where robust topological properties provide a way on how stress localises and delocalises across the structure with directional preference. Building on this, we propose a direct relationship between lattice topology and damage propagation. We identify a set of topology- and geometry-dependent parameters that gives a simple, predictive framework for nonideal Maxwell lattices and their damage processes. We will discuss how topological polarisation and domain walls steer and arrest damage in a repeatable way. Experiments confirm the theoretical predicted localisation and the resulting tuneable progression of damage and show how this control mechanism can be used to enhance dissipation and raise the apparent fracture energy.

 

Further Information

Dr Marcelo A. Dias is a Reader in Structural Engineering at the University of Edinburgh. His research spans theoretical structural mechanics, soft condensed matter, and materials modelling. He focuses on understanding how the mechanical behaviour of elastic bodies emerges from the interplay between material composition and carefully designed internal geometry. His work has applications across shape formation in nature, biomechanics, materials and structural mechanics, and the controlled design and functionality of thin plates and shells. You can find some wonderful examples of this research on his research site: https://mazdias.wordpress.com/research/ 

Thu, 05 Feb 2026

12:00 - 12:30
Lecture Room 4, Mathematical Institute

A Very Short Introduction to Ptychographic Image Reconstruction

Prof Jaroslav Fowkes
Abstract

I will present a very short introduction to the mathematics behind the scientific imaging technique known as ptychography, starting with a brief overview of the physics model and the various simplifications required, before moving on to the main ptychography inverse problem and the three principal classes of optimization algorithms currently being used in practice. 

Thu, 05 Feb 2026
12:45
L6

Puzzles for babies

Boris Post
Abstract

For this JC, I will review the recently much debated puzzles that arise in holographic systems with baby universes. After describing the original set-up of Antonini-Sasieta-Swingle, I will explain the paradox raised by Antonini-Rath, which suggests the existence of a single CFT state that can have two distinct holographic descriptions in the bulk: one with a closed baby universe and one without. I will discuss various proposed resolutions of this puzzle, which may (or may not) require us to rethink the holographic dictionary in AdS/CFT.

Further Information

Please submit papers to discuss and topic suggestions here: https://sites.google.com/view/math-phys-oxford/journal-club

Thu, 05 Feb 2026

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

A Riemannian Approach for PDE-Constrained Shape Optimization Using Outer Metrics

Estefania Loayza Romero
(University of Strathclyde)
Abstract

Speaker Estefania Loayza Romero will talk about:  A Riemannian Approach for PDE-Constrained Shape Optimization Using Outer Metrics

In PDE-constrained shape optimisation, shapes are traditionally viewed as elements of a Riemannian manifold, specifically as embeddings of the unit circle into the plane, modulo reparameterizations. The standard approach employs the Steklov-Poincaré metric to compute gradients for Riemannian optimisation methods. A significant limitation of current methods is the absence of explicit expressions for the geodesic equations associated with this metric. Consequently, algorithms have relied on retractions (often equivalent to the perturbation of identity method in shape optimisation) rather than true geodesic paths. Previous research suggests that incorporating geodesic equations, or better approximations thereof, can substantially enhance algorithmic performance. This talk presents numerical evidence demonstrating that using outer metrics, defined on the space of diffeomorphisms with known geodesic expressions, improves Riemannian gradient-based optimisation by significantly reducing the number of required iterations and preserving mesh quality throughout the optimisation process.

 

This talk is hosted at RAL. 

Thu, 05 Feb 2026
16:00
Lecture Room 4

Pseudomodularity of residually reducible Galois representations

Tobias Berger
(University of Sheffield)
Abstract

I will present new results, joint with Krzysztof Klosin (CUNY), on the modularity of residually reducible Galois representations with 3 residual pieces. This will be applied to prove the p-adic modularity of Picard curves.

Thu, 05 Feb 2026

16:00 - 17:00
L5

Linking Path-Dependent and Stochastic Volatility Models

Cephas Svosve
((Mathematical Institute University of Oxford))
Abstract
We explore a link between stochastic volatility (SV) and path-dependent volatility (PDV) models. Using assumed density filtering, we map a given SV model into a corresponding PDV representation. The resulting specification is lightweight, improves in-sample fit, and delivers robust out-of-sample forecasts. We also introduce a calibration procedure for both SV and PDV models that produces standard errors for parameter estimates and supports joint calibration of SPX/VIX smile.


 

Thu, 05 Feb 2026
17:00
L3

Ehrenfeucht–Fraïssé-type games in metric model theory

Joni Puljujarvi
(UCL)
Abstract
We survey some results in the model theory of metric structures related to different generalisations of the classic Ehrenfeucht–Fraïssé game. Namely, we look at a game of length $\omega$ that is used to characterise separable structures up to different notions of approximate isomorphism (such as linear isomorphisms between Banach spaces) in a framework that resembles that of positive bounded formulas. Additionally, we look at the (finite-length) EF game for continuous first-order logic and its variant of Ehrenfeucht's theorem. Last, we mention recent work on game comonads for continuous logic.
Fri, 06 Feb 2026

11:00 - 12:00
L4

Phase transition in collective dynamics

Prof Sara Merino-Aceituno
(Dept of Maths Universitat Wien)
Abstract

Certain models of collective dynamics exhibit deceptively simple patterns that are surprisingly difficult to explain. These patterns often arise from phase transitions within the underlying dynamics. However, these phase transitions can be explained only when one derives continuum equations from the corresponding individual-based models. In this talk, I will explore this subtle yet rich phenomenon and discuss advances and open problems.

Fri, 06 Feb 2026
13:00
L6

Computing Diffusion Geometry

Iolo Jones
(Oxford University)
Abstract

Calculus and geometry are ubiquitous in the theoretical modelling of scientific phenomena, but have historically been very challenging to apply directly to real data as statistics. Diffusion geometry is a new theory that reformulates classical calculus and geometry in terms of a diffusion process, allowing these theories to generalise beyond manifolds and be computed from data. In this talk, I will describe a new, simple computational framework for diffusion geometry that substantially broadens its practical scope and improves its precision, robustness to noise, and computational complexity. We present a range of new computational methods, including all the standard objects from vector calculus and Riemannian geometry, and apply them to solve spatial PDEs and vector field flows, find geodesic (intrinsic) distances, curvature, and several new topological tools like de Rham cohomology, circular coordinates, and Morse theory. These methods are data-driven, scalable, and can exploit highly optimised numerical tools for linear algebra.

Mon, 09 Feb 2026

14:00 - 15:00
Lecture Room 3

What makes an image realistic ?

Lucas Theis
Abstract

Speaker Lucas Theis will talk about: 'What makes an image realistic ?'

The last decade has seen tremendous progress in our ability to generate realistic-looking data, be it images, text, audio, or video. 
In this presentation, we will look at the closely related problem of quantifying realism, that is, designing functions that can reliably tell realistic data from unrealistic data. This problem turns out to be significantly harder to solve and remains poorly understood, despite its prevalence in machine learning and recent breakthroughs in generative AI. Drawing on insights from algorithmic information theory, we discuss why this problem is challenging, why a good generative model alone is insufficient to solve it, and what a good solution would look like. In particular, we introduce the notion of a universal critic, which unlike adversarial critics does not require adversarial training. While universal critics are not immediately practical, they can serve both as a North Star for guiding practical implementations and as a tool for analyzing existing attempts to capture realism.

 

 

 

Mon, 09 Feb 2026
14:15
L4

Biharmonic maps on conformally compact manifolds

Marco Usula
((Mathematical Institute University of Oxford))
Abstract

In this talk, I will present a result proved in my recent paper arXiv:2502.13580. I will discuss biharmonic maps between (and submanifolds of) conformally compact manifolds, a large class of complete manifolds generalizing hyperbolic space. After an introduction to conformally compact geometry, I will discuss one of the main results of the paper: if S is a properly embedded sub-manifold of a conformally compact manifold (N,h), and moreover S is transverse to the boundary and (N,h) has non-positive curvature, then S must be minimal. This result confirms a conjecture known as the Generalized Chen’s Conjecture, in the conformally compact context.

Mon, 09 Feb 2026

15:30 - 16:30
L3

On blowup for wave maps with additive noise

Irfan Glogić
(Bielefeld University)
Abstract

We study a prototypical geometric wave equation, given by wave maps from the Minkowski space R 1+d into the sphere S d , under the influence of additive stochastic forcing, in all energy-supercritical dimensions d ≥ 3. In the deterministic setting, self-similar finite-time blowup is expected for large data, but remains open beyond perturbative regimes. We show that adding a non-degenerate Gaussian noise provokes finite-time blowup with positive probability for arbitrary initial data. Moreover, the blowup is governed by the explicit self-similar profile originally identified in the deterministic theory. Our approach combines local well-posedness for stochastic wave equations, a Da Prato-Debussche decomposition, and a stability analysis in self-similar variables. The result corroborates the conjecture that the self-similar blowup mechanism is robust and represents the generic large-data behavior in the deterministic problem.

This is joint work with M. Hofmanova and E. Luongo (Bielefeld)

Mon, 09 Feb 2026
15:30
L5

The fiberwise THH transfer and graph characteristic classes with one loop

Robin Stoll
(Cambridge University)
Abstract

I will report on work joint with Florian Naef in which we produce, for a map f of spaces over a space B such that f has compact fibers, a rational model for the fiberwise transfer of fiberwise topological Hochschild homology, considered as a map of parametrized spectra over B. This is motivated by applications to moduli spaces of manifolds: in particular we can detect the vanishing of certain cohomology classes originating from a graph complex via the classifying space of homotopy automorphisms.
 

Mon, 09 Feb 2026

16:30 - 17:30
L4

Scattering and Asymptotics for Critically Weakly Hyperbolic and Singular Systems

Dr. Arick Shao
(Queen Mary University of London)
Abstract

We study a very general class of first-order linear hyperbolic
systems that both become weakly hyperbolic and contain singular
lower-order coefficients at a single time t = 0. In "critical" weakly
hyperbolic settings, it is well-known that solutions lose a finite
amount of regularity at t = 0. Here, we both improve upon the analysis
in the weakly hyperbolic setting, and we extend this analysis to systems
containing critically singular coefficients, which may also exhibit
modified asymptotics and regularity loss at t = 0.

In particular, we give precise quantifications for (1) the asymptotics
of solutions as t approaches 0, (2) the scattering problem of solving
the system with asymptotic data at t = 0, and (3) the loss of regularity
due to the degeneracies at t = 0. Finally, we discuss a wide range of
applications for these results, including weakly hyperbolic wave
equations (and equations of higher order), as well as equations arising
from relativity and cosmology (e.g. at big bang singularities).

This is joint work with Bolys Sabitbek (Ghent).

Tue, 10 Feb 2026
12:30
C4

Models for subglacial floods during surface lake drainage events

Harry Stuart
(OCIAM Oxford)
Abstract

As temperatures are increasing, so is the presence of meltwater lakes sitting on the surface of the Greenland Ice Sheet. Such lakes have the possibility of draining through cracks in the ice to the bedrock. Observed discharge rates have found that these lakes can drain at three times the flow rate of Niagara Falls. Current models of subglacial drainage systems are unable to cope with such a large and sudden volume of water. This motivates the idea of a 'subglacial blister' which propagates and slowly dissipates underneath the ice sheet. We present a basic hydrofracture model for understanding this process, before carrying out a number of extensions to observe the effects of turbulence, topography, leak-off and finite ice thickness.

Tue, 10 Feb 2026
13:00
L2

Dynamics of the Fermion-Rotor System

Vazha Loladze
(Oxford )
Abstract

In this talk, I will examine the dynamics of the fermion–rotor system, originally introduced by Polchinski as a toy model for monopole–fermion scattering. Despite its simplicity, the system is surprisingly subtle, with ingoing and outgoing fermion fields carrying different quantum numbers. I will show that the rotor acts as a twist operator in the low-energy theory, changing the quantum numbers of excitations that have previously passed through the origin to ensure scattering consistent with all symmetries, thereby resolving the long-standing Unitarity puzzle. I will then discuss generalizations of this setup with multiple rotors and unequal charges, and demonstrate how the system can be viewed as a UV-completion of boundary states for chiral theories, establishing a connection to the proposed resolution of the puzzle using boundary conformal field theory.

Tue, 10 Feb 2026

14:00 - 15:00
C3

Level Sets of Persistent Homology for Point Clouds

Dr. David Beers
(University of California Los Angeles)
Abstract

Persistent homology (PH) is an operation which, loosely speaking, describes the different holes in a point cloud via a collection of intervals called a barcode. The two most frequently used variants of persistent homology for point clouds are called Čech PH and Vietoris-Rips PH. How much information is lost when we apply these kinds of PH to a point cloud? We investigate this question by studying the subspace of point clouds with the same barcodes under these operations. We establish upper and lower bounds on the dimension of this space, and find that the question of when the persistence map is identifiable has close ties to rigidity theory. For example, we show that a generic point cloud being locally identifiable under Vietoris-Rips persistence is equivalent to a certain graph being rigid on the same point cloud.

Tue, 10 Feb 2026
14:45
L6

Chabauty limits of fixed point groups of p-adic involutions

Corina-Gabriela Ciobotaru
(Aarhus University)
Abstract

Let G be a connected reductive group defined over a non-Archimedean local field k. Endow G with a k-involution and take H to be the fixed-point subgroup in G of that involution. In this talk I will report on some of my recent results regarding Chabauty limits of H(k) inside G(k). Although the results are similar to the real and complex cases, the techniques are totally different and with a strong geometric flavor. Some of the main actors are the Bruhat—Tits building associated with G(k) and basic methods from CAT(0) geometry.

Tue, 10 Feb 2026
15:00
L6

The kernel knows

Nansen Petrosyan
Abstract
For a graph product of groups, the canonical map to the direct product of the vertex groups has a kernel whose structure is not immediately apparent. Remarkably, this kernel turns out to be oblivious to most of the algebra one builds into the construction, yet it is sensitive to the underlying combinatorics.
This has applications to the Baum--Connes conjecture, Brown's question, the Eilenberg--Ganea conjecture and inheritance properties of graph products of groups. 
I'll survey known results and discuss our joint work with Ian Leary.
Tue, 10 Feb 2026
15:30
L4

Cohomological Hall algebras of 1-dimensional sheaves and Yangians over the Bridgeland's space of stability conditions

Francesco Sala
(Pisa)
Abstract

In this talk, I will introduce the nilpotent cohomological Hall algebra COHA(S, Z) of coherent sheaves on a smooth quasi-projective complex surface S that are set-theoretically supported on a closed subscheme Z. This algebra can be viewed as the "largest" algebra of cohomological Hecke operators associated with modifications along a subscheme Z of S. When S is the minimal resolution of an ADE singularity and Z is the exceptional divisor, I will describe how to characterize COHA(S, Z) in terms of the Yangian of the corresponding affine ADE quiver Q (based on joint work with Emanuel Diaconescu, Mauro Porta, Oliver Schiffmann, and Eric Vasserot, arXiv:2502.19445). More generally, I will discuss nilpotent COHAs arising from Bridgeland stability conditions on the bounded derived category of nilpotent representations of the preprojective algebra of Q, following joint work with Olivier Schiffmann and Parth Shimpi (arXiv:2511.08576).

Tue, 10 Feb 2026
16:00
C3

TBC

Alexander Ravnanger
(Dept of Mathematical Sciences University of Copenhagen)
Abstract

to follow

Wed, 11 Feb 2026
14:30
N3.12

Book Club: x+y

Abstract

Join us to discuss x+y: A Mathematician’s Manifesto for Rethinking Gender by Eugenia Cheng.

Wed, 11 Feb 2026
15:00
L6, Mathematical Institute

The distribution of zeroes of modular forms (Wednesday 3pm)

Zeev Rudnick
(Tel Aviv University)
Abstract

I will discuss old and new results about the distribution of zeros of modular forms, and relation to Quantum Unique Ergodicity. It is known that a modular form of weight k has about k/12 zeros in the fundamental domain . A classical question in the analytic theory of modular forms is “can we locate the zeros of a distinguished family of modular forms?”. In 1970, F. Rankin and Swinnerton-Dyer proved that the zeros of the Eisenstein series all lie on the circular part of the boundary of the fundamental domain. In the beginning of this century, I discovered that for cuspidal Hecke eigenforms, the picture is very different - the zeros are not localized, and in fact become uniformly distributed in the fundamental domain. Very recently, we have investigated other families of modular forms, such as the Miller basis (ZR 2024, Roei Raveh 2025, Adi Zilka 2026), Poincare series (RA Rankin 1982, Noam Kimmel 2025) and theta functions (Roei Raveh 2026),  finding a variety of possible distributions of the zeroes.

 

(Joint seminar with Random Matrix Theory)

Wed, 11 Feb 2026
15:00

The distribution of zeroes of  modular forms 

Zeev Rudnick
Abstract

I will discuss old and new results about the distribution of zeros of modular forms, and relation to Quantum Unique Ergodicity. It is known that a modular form of weight k has about k/12 zeros in the fundamental domain . A classical question in the analytic theory of modular forms is “can we locate the zeros of a distinguished family of modular forms?”. In 1970, F. Rankin and Swinnerton-Dyer proved that the zeros of the Eisenstein series all lie on the circular part of the boundary of the fundamental domain. In the beginning of this century, I discovered that for cuspidal Hecke eigenforms, the picture is very different - the zeros are not localized, and in fact become uniformly distributed in the fundamental domain. Very recently, we have investigated other families of modular forms, such as the Miller basis (ZR 2024, Roei Raveh 2025, Adi Zilka 2026), Poincare series (RA Rankin 1982, Noam Kimmel 2025) and theta functions (Roei Raveh 2026),  finding a variety of possible distributions of the zeroes.

Further Information

Joint seminar with Number Theory.

Thu, 12 Feb 2026

12:00 - 13:00
L3

A theoretical maximum for bacterial surface adhesion in fluid flow

Edwina Yeo
(University College London)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

The mitigation of bacterial adhesion to surfaces and subsequent biofilm formation is a key challenge in healthcare and manufacturing processes. To accurately predict biofilm formation you must determine how changes to bacteria behaviours and dynamics alter their ability to adhere to surfaces. In this talk, I will present a framework for incorporating microscale behaviour into continuum models using techniques from statistical mechanics at the microscale combined with boundary-layer theory at the macroscale.

 

We will examine the flow of a dilute suspension of motile bacteria over a flat absorbing surface, developing an effective model for the bacteria density near the boundary inspired by the classical Lévêque boundary layer problem. We use our effective model to derive analytical solutions for the bacterial adhesion rate as a function of fluid shear rate and individual motility parameters of the bacteria, validating against stochastic numerical simulations of individual bacteria. We find that bacterial adhesion is greatest at intermediate flow rates, since at higher flow rates shear-induced upstream swimming limits adhesion.

 

Further Information

Dr Edwina Yeo is an applied mathematician working at the interface of continuum mechanics and mathematical biology. She specialises in developing mathematical models for biological and biomedical fluid-mechanics processes, with research spanning regenerative medicine, nanotechnology, microbiology and geology. Her recent work includes models of bacterial adhesion in fluid flow, Von Willebrand Factor dynamics in arterial flows, and microscale contaminant behaviour extracted from imaging data.

Her publications appear in journals such as Biomechanics and Modelling in Mechanobiology, Advanced Materials, and Royal Society Interface, alongside recent collaborative preprints. She is currently an EPSRC National Fellow in Fluid Dynamics at UCL and a visiting research fellow in OCIAM.

Thu, 12 Feb 2026

12:00 - 12:30
Lecture Room 4, Mathematical Institute

TBA

Irina-Beatrice Nimerenco
Abstract

TBA

Thu, 12 Feb 2026

14:00 - 15:00
Lecture Room 3

The Dean–Kawasaki Equation: Theory, Numerics, and Applications

Prof Ana Djurdjevac
(Mathematical Institute - University of Oxford)
Abstract

Professor Ana Djurdjevac will talk about; 'The Dean–Kawasaki Equation: Theory, Numerics, and Applications'

 

The Dean–Kawasaki equation provides a stochastic partial differential equation description of interacting particle systems at the level of empirical densities and has attracted considerable interest in statistical physics, stochastic analysis, and applied modeling. In this work, we study analytical and numerical aspects of the Dean–Kawasaki equation, with a particular focus on well-posedness, structure preservation, and possible discretization strategies. In addition, we extend the framework to the Dean–Kawasaki equation posed on smooth hypersurfaces. We discuss applications of the Dean–Kawasaki framework to particle-based models arising in biological systems and modeling social dynamics.

Thu, 12 Feb 2026

16:00 - 17:00
L5

Optimal Investment and Consumption in a Stochastic Factor Model

Florian Gutekunst
(University of Warwick)
Abstract

We study optimal investment and consumption in an incomplete stochastic factor model for a power utility investor on the infinite horizon. When the state space of the stochastic factor is finite, we give a complete characterisation of the well-posedness of the problem and provide an efficient numerical algorithm for computing the value function. When the state space is a (possibly infinite) open interval and the stochastic factor is represented by an Ito diffusion, we develop a general theory of sub- and supersolutions for second-order ordinary differential equations on open domains without boundary values to prove existence of the solution to the Hamilton-Jacobi-Bellman (HJB) equation along with explicit bounds for the solution. By characterising the asymptotic behaviour of the solution, we are also able to provide rigorous verification arguments for various models, including the Heston model. Finally, we link the discrete and continuous setting and show that that the value function in the diffusion setting can be approximated very efficiently through a fast discretisation scheme.

Thu, 12 Feb 2026
17:00
Lecture Theatre 1

Rhythmicity and Coordination: The Importance of Circadian and Seasonal Biology - Russell Foster

Russell Foster
Further Information

Biology is not constant but highly rhythmic. This includes the fast rhythms of action potentials in the nervous system and the pulsatile release of hormones. At a longer time-scale are the daily (circadian) rhythms and annual rhythms observed across much of the biological world. This talk will consider the mechanisms and importance of circadian rhythms to human health and the role of seasonal timing in reproduction and other phenomena in birds, mammals and humans. In biology, like the rest of science, timing is everything.

Russell Foster is Professor of Circadian Neuroscience and the Head of the Nuffield Laboratory of Ophthalmology in Oxford. He has featured widely in print and broadcast media on the subject of sleep and circadian rhythms and is the author of several popular books on the subject.

Please email external-relations@ maths.ox.ac.uk to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Thursday 5 March at 5-6 pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 13 Feb 2026

11:00 - 12:00
L4

Sharp habitat shifts, evolutionary tipping points and rescue: Quantifying the perilous path of a specialist species towards a refugium in a changing environment via a PDE model

Dr Leonard Dekens
(The Francis Crick Institute London)
Abstract

Specialist species thrive under specific environmental conditions in narrow geographic ranges and are widely recognized as heavily threatened by climate deregulation. Many might rely on both their potential to adapt and to disperse towards a refugium to avoid extinction. It is thus crucial to understand the influence of environmental conditions on the unfolding process of adaptation. I will present a PDE model of the eco-evolutionary dynamics of a specialist species in a two-patch environment with moving optima. The transmission of the adaptive trait across generations is modelled by a non-linear, non-local operator of sexual reproduction. In an asymptotic regime of small variance, I justify that the local trait distributions are well approximatted by Gaussian distributions with fixed variances, which allows to report the analysis on the closed system of moments. Thanks to a separation of time scales between ecology and evolution, I next derive a limit system of moments and analyse its stationary states. In particular, I identify the critical environmental speed for persistence, which reflects how both the existence of a refugium and the cost of dispersal impact extinction patterns. Additionally, the analysis provides key insights regarding the path towards this refugium. I show that there exists a critical environmental speed above which the species crosses a tipping point, resulting into an abrupt habitat switch from its native patch to the refugium. When selection for local adaptation is strong, this habitat switch passes through an evolutionary ‘‘death valley’’ that can promote extinction for lower environmental speeds than the critical one.