Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Mon, 30 Jun 2025 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2025

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2025. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Wed, 31 Dec 2025 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until the end of the year.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Wed, 11 Jun 2025
11:00
L5

Conditioning Diffusions Using Malliavin Calculus

Dr Jakiw Pidstrigach
(Department of Statistics, University of Oxford)
Abstract

In stochastic optimal control and conditional generative modelling, a central computational task is to modify a reference diffusion process to maximise a given terminal-time reward. Most existing methods require this reward to be differentiable, using gradients to steer the diffusion towards favourable outcomes. However, in many practical settings, like diffusion bridges, the reward is singular, taking an infinite value if the target is hit and zero otherwise. We introduce a novel framework, based on Malliavin calculus and path-space integration by parts, that enables the development of methods robust to such singular rewards. This allows our approach to handle a broad range of applications, including classification, diffusion bridges, and conditioning without the need for artificial observational noise. We demonstrate that our approach offers stable and reliable training, outperforming existing techniques. 

Wed, 11 Jun 2025
16:00
L5

Finiteness properties of some automorphism groups of right-angled Artin groups

Gabriel Corrigan
(University of Glasgow)
Abstract

Right-angled Artin groups (RAAGs) can be viewed as a generalisation of free groups. To what extent, then, do the techniques used to study automorphisms of free groups generalise to the setting of RAAGs? One significant advance in this direction is the construction of 'untwisted Outer space' for RAAGs, a generalisation of the influential Culler-Vogtmann Outer space for free groups. A consequence of this construction is an upper bound on the virtual cohomological dimension of the 'untwisted subgroup' of outer automorphisms of a RAAG. However, this bound is sometimes larger than one expects; I present work showing that, in fact, it can be arbitrarily so, by forming a new complex as a deformation retraction of the untwisted Outer space. In a different direction, another subgroup of interest is that consisting of symmetric automorphisms. Generalising work in the free groups setting from 1989, I present an Outer space for the symmetric automorphism group of a RAAG. A consequence of the proof is a strong finiteness property for many other subgroups of the outer automorphism group.

Thu, 12 Jun 2025

11:00 - 12:00
C5

30 years since the Galois characterisation of ℚₚ — Part I

Leo Gitin
(University of Oxford)
Abstract

The absolute Galois group of ℚₚ determines its field structure: a field K is p-adically closed if and only if its absolute Galois group is isomorphic to that of ℚₚ. This Galois-theoretic characterisation was proved by Koenigsmann in 1995, building on previous work by Arason, Elman, Jacob, Ware, and Pop. Similar results were obtained by Efrat and further developed in his 2006 book.

Our project aims to provide an optimal proof of this characterisation, incorporating improvements and new developments. These include a revised proof strategy; Efrat's construction of valuations via multiplicative stratification; the Galois characterisation of henselianity; systematic use of the standard decomposition; and the function field analogy of Krasner-Kazhdan-Deligne type. Moreover, we replace arguments that use Galois cohomology with elementary ones.

In this talk, I will focus on two key components of the proof: the construction of valuations from rigid elements, and the role of the function field analogy as developed via the non-standard methods of Jahnke-Kartas.

This is joint work with Jochen Koenigsmann and Benedikt Stock.

Thu, 12 Jun 2025

12:00 - 13:00
L3

Microfluidic model of haemodynamics in complex media

Anne Juel
(University of Manchester)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Short Bio
Anna Juel is a physicist whose research explores the complex dynamics of material systems, particularly in two-phase flows and wetting phenomena. Her group focuses on microfluidics, fluid-structure interactions, and complex fluid flows, with applications ranging from chocolate moulding to airway reopening and flexible displays. Based at the Manchester Centre for Nonlinear Dynamics, her experimental work often uncovers surprising behaviour, driving new insights through combined experimentation and modelling.

Abstract
The flow of red blood cells (RBCs) in heterogeneous biological porous tissues such as the human placenta, remains poorly understood despite the essential role the microvasculature plays in maintaining overall health and functionality of tissues, blood flow and transport mechanisms. This is in great part because the usual description of blood as a simple fluid breaks down when the size of RBCs is similar to that of the vessel. In this study, we use a bespoke suspension of ultra-soft microcapsules with a poroelastic membrane, which have been previously shown to mimic the motion and large deformations of RBCs in simple conduits [1], in order to explore soft suspension flows in planar porous media. Our planar porous devices are Hele-Shaw channels, where the capsules are slightly confined within the channel depth, and in which we increase confinement by adding regular or disordered arrays of pillars. We perform experiments that relate the global resistance of the suspension flow through the porous media to the local distributions of capsule concentration and velocity as a function of volume fraction, capillary number Ca, the ratio of viscous to elastic forces, and geometry. We find that the flow patterns in Hele-Shaw channels and ordered porous media differ significantly from those in disordered porous media, where the presence of capsules promotes preferential paths and supports anomalous capsule dispersion. In contrast, the flows in ordered geometries develop intriguing shear-banding patterns as the volume fraction increases. Despite the complex microscopic dynamics of the suspension flow, we observe the emergence of similar scaling laws for the global flow resistance in both regular and disordered porous media as a function of Ca. We find that the scaling exponent decreases with increasing volume fraction because of cooperative capsule mechanisms, which yield relative stiffening of the system for increasing Ca.
 
[1] Chen et al. Soft Matter 19, 5249- 5261.
 
Thu, 12 Jun 2025

12:00 - 12:30
L4

Cubic-quartic regularization models for solving polynomial subproblems in third-order tensor methods

Kate Zhu
(Mathematical Institute (University of Oxford))
Abstract

High-order tensor methods for solving both convex and nonconvex optimization problems have recently generated significant research interest, due in part to the natural way in which higher derivatives can be incorporated into adaptive regularization frameworks, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, to find the next solution approximation, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of the change in the iterates. Developing efficient techniques for the solution of such subproblems is currently, an ongoing topic of research,  and this talk addresses this question for the case of the third-order tensor subproblem. In particular, we propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with  Quartic Regularisation, by sequentially minimizing a sequence of local quadratic models that also incorporate both simple cubic and quartic terms.

The role of the cubic term is to crudely approximate local tensor information, while the quartic one provides model regularization and controls progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $O(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases.  We propose practical CQR variants that judiciously use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.

Thu, 12 Jun 2025
12:00
C6

Recent progress on the structure of metric currents.

Emanuele Caputo
(University of Warwick)
Abstract

The goal of the talk is to give an overview of the metric theory of currents by Ambrosio-Kirchheim, together with some recent progress in the setting of Banach spaces. Metric currents are a generalization to the metric setting of classical currents. Classical currents are the natural generalization of oriented submanifolds, as distributions play the same role for functions. We present a structure result for 1-metric currents as superposition of 1-rectifiable sets in Banach spaces, which generalizes a previous result by Schioppa. This is based on an approximation result of metric 1-currents with normal 1-currents. This is joint work with D. Bate, J. Takáč, P. Valentine, and P. Wald (Warwick).

Thu, 12 Jun 2025

14:00 - 15:00
Lecture Room 3

Finite volumes for a generalized Poisson-Nernst-Planck system with cross-diffusion and size exclusion

Clément Cancès
(INRIA LILLE)
Abstract

We propose and analyse two structure preserving finite volume schemes to approximate the solutions to a cross-diffusion system with self-consistent electric interactions introduced by Burger, Schlake & Wolfram (2012). This system has been derived thanks to probabilistic arguments and admits a thermodynamically motivated Lyapunov functional that is preserved by suitable two-point flux finite volume approximations. This allows to carry out the mathematical analysis of two schemes to be compared.

This is joint work with Maxime Herda and Annamaria Massimini.

 

 

Thu, 12 Jun 2025

14:30 - 16:00
C1

"Eine grössere Harmonie zwischen Begriff und Bild": Eduard Study on mathematical freedom, language, and objectivity

Nicolas Michel
(Isaac Newton Institute, University of Cambridge & Open University)
Abstract
German mathematician Eduard Study (1862-1930) was an outspoken critic of several emerging trends in modern mathematics at the turn of the century. Intuitionism, he argued, was in the process of eliminating the very notion of truth at the core of any serious scientific endeavour, whereas axiom-obsessed formalists engaged in a mere game of symbols, thereby losing sight of what really grants meaning and value to mathematical concepts. In rejecting both approaches, Study sought to maintain that mathematics was a science formed of freely-created concepts yet still possessed a specific form of objectivity, whose exploration crucially relied on the careful construction of symbolic languages.
 
To disentangle these claims, this talk will delve into Study's unpublished, philosophical essay on the foundations of analysis, and compare it to the mathematical practice espoused in his 1903 Geometrie der Dynamen, a landmark volume in the history of kinematics.
Thu, 12 Jun 2025
16:00
Lecture Room 4

The exceptional zero conjecture for GL(3)

Chris Williams
(University of Nottingham)
Abstract

The BSD conjecture predicts that a rational elliptic curve $E$ has infinitely many points if and only if its $L$-function vanishes at $s=1$.

There are $p$-adic versions of similar phenomena. If $E$ is $p$-ordinary, there is, for example, a $p$-adic analytic analogue $L_p(E,s)$ of the $L$-function, and if $E$ has good reduction, then it has infinitely many rational points iff $L_p(E,1) = 0$. However if $E$ has split multiplicative reduction at $p$ - that is, if $E/\mathbf{Q}_p$ admits a Tate uniformisation $\mathbf{C}_p^{\times}/q^{\mathbf{Z}}$ - then $L_p(E,1) = 0$ for trivial reasons, regardless of $L(E,1)$; it has an 'exceptional zero'. Mazur--Tate--Teitelbaum's exceptional zero conjecture, proved by Greenberg--Stevens in '93, states that in this case the first derivative $L_p'(E,1)$ is much more interesting: it satisfies $L_p'(E,1) = \mathrm{log}(q)/\mathrm{ord}(q) \times L(E,1)/(\mathrm{period})$. In particular, it should vanish iff $L(E,1) = 0$ iff $E(\mathbf{Q})$ is infinite; and even better, it has a beautiful and surprising connection to the Tate period $q$, via the 'L-invariant' $\mathrm{log}(q)/\mathrm{ord}(q)$.

In this talk I will discuss exceptional zero phenomena and L-invariants, and a generalisation of the exceptional zero conjecture to automorphic representations of GL(3). This is joint work in progress with Daniel Barrera and Andrew Graham.

Thu, 12 Jun 2025
16:00
L5

First- and Half-order Schemes for Regime Switching Stochastic Differential Equation with Non-differentiable Drift Coefficient

Chaman Kumar
(Indian Institute of Technology)
Abstract

An explicit first-order drift-randomized Milstein scheme for a regime switching stochastic differential equation is proposed and its bi-stability and rate of strong convergence are investigated for a non-differentiable drift coefficient. Precisely, drift is Lipschitz continuous while diffusion along with its derivative is Lipschitz continuous. Further, we explore the significance of evaluating Brownian trajectories at every switching time of the underlying Markov chain in achieving the convergence rate 1 of the proposed scheme. In this context, possible variants of the scheme, namely modified randomized and reduced randomized schemes, are considered and their convergence rates are shown to be 1/2. Numerical experiments are performed to illustrate the convergence rates of these schemes along with their corresponding non-randomized versions. Further, it is illustrated that the half-order non-randomized reduced and modified schemes outperform the classical Euler scheme.

Thu, 12 Jun 2025
17:00
L3

Hrushovski constructions in ordered fields

Yilong Zhang
(Universitat Bonn)
Abstract
Hrushovski constructions are a variant of amalgamation methods. They were invented to construct new examples of strongly minimal theories. The method was later adapted to expansions of fields, including colored fields and powered fields. In this talk, I will present my attempt to apply Hrushovski constructions to ordered fields. I will construct an expansion of RCF by a dense multiplicative subgroup (green points). Hrushovski constructions induce a back-and-forth system, enabling us to study the dp-rank and the open core of this structure. I will also introduce my recent progress on powered fields, an expansion of RCF by "power functions" on the unit circle, and my plan to axiomatize expansions of the real field using Hrushovski constructions.
Fri, 13 Jun 2025

11:00 - 12:00
L4

Cell-bulk compartmental reaction-diffusion systems: symmetry-breaking patterns with equal diffusivities and diffusion-Induced synchrony.

Professor Michael Ward
(Dept of Mathematics University of British Columbia)
Abstract

We investigate pattern formation for a 2D PDE-ODE bulk-cell model, where one or more bulk diffusing species are coupled to nonlinear intracellular
reactions that are confined within a disjoint collection of small compartments. The bulk species are coupled to the spatially segregated
intracellular reactions through Robin conditions across the cell boundaries. For this compartmental-reaction diffusion system, we show that
symmetry-breaking bifurcations leading to stable asymmetric steady-state patterns, as regulated by a membrane binding rate ratio, occur even when
two bulk species have equal bulk diffusivities. This result is in distinct contrast to the usual, and often biologically unrealistic, large
differential diffusivity ratio requirement for Turing pattern formation from a spatially uniform state. Secondly, for the case of one-bulk
diffusing species in R^2, we derive a new memory-dependent ODE integro-differential system that characterizes how intracellular
oscillations in the collection of cells are coupled through the PDE bulk-diffusion field. By using a fast numerical approach relying on the
``sum-of-exponentials'' method to derive a time-marching scheme for this nonlocal system, diffusion induced synchrony is examined for various
spatial arrangements of cells using the Kuramoto order parameter. This theoretical modeling framework, relevant when spatially localized nonlinear
oscillators are coupled through a PDE diffusion field, is distinct from the traditional Kuramoto paradigm for studying oscillator synchronization on
networks or graphs. (Joint work with Merlin Pelz, UBC and UMinnesota).

Fri, 13 Jun 2025

11:00 - 12:00
Lecture Room 3

A Mathematical Perspective on Transformers

Prof Philippe Rigollet
(Massachusetts Institute of Technology, USA)
Abstract

Since their introduction in 2017, Transformers have revolutionized large language models and the broader field of deep learning. Central to this success is the ground-breaking self-attention mechanism. In this presentation, I’ll introduce a mathematical framework that casts this mechanism as a mean-field interacting particle system, revealing a desirable long-time clustering behaviour. This perspective leads to a trove of fascinating questions with unexpected connections to Kuramoto oscillators, sphere packing, Wasserstein gradient flows, and slow dynamics.

 

Bio: Philippe Rigollet is a Distinguished Professor of Mathematics at MIT, where he serves as Chair of the Applied Math Committee and Director of the Statistics and Data Science Center. His research spans multiple dimensions of mathematical data science, including statistics, machine learning, and optimization, with recent emphasis on optimal transport and its applications. See https://math.mit.edu/~rigollet/ for more information.

 

 

This is hosted by the AI Reading Group

 

 

 

Fri, 13 Jun 2025

12:00 - 13:00
Quillen Room

[Cancelled]

Ittihad Hasib
(University of Warwick)
Abstract

Due to a family emergency, the speaker unfortunately had to cancel this talk.

Fri, 13 Jun 2025
13:00
L5

The Likelihood Correspondence

Hal Schenck
(Auburn University)
Abstract

An arrangement of hypersurfaces in projective space is strict normal crossing if and only if its Euler discriminant is nonzero. We study the critical loci of all Laurent monomials in the equations of the smooth hypersurfaces. These loci form an irreducible variety in the product of two projective spaces, known in algebraic statistics as the likelihood correspondence and in particle physics as the scattering correspondence. We establish an explicit determinantal representation for the bihomogeneous prime ideal of this variety.

Joint work with T. Kahle, B. Sturmfels, M. Wiesmann

Mon, 16 Jun 2025
14:15
L5

BPS polynomials and Welschinger invariants

Pierrick Bousseau
(University of Georgia)
Abstract
For any smooth projective surface $S$, we introduce BPS polynomials — Laurent polynomials in a formal variable $q$ — derived from the higher genus Gromov–Witten theory of the 3-fold $S \times {\mathbb P}^1$. When $S$ is a toric del Pezzo surface, we prove that these polynomials coincide with the Block–Göttsche polynomials defined in terms of tropical curve counts. Beyond the toric case, we conjecture that for surfaces $S_n$ obtained by blowing up ${\mathbb P}^2$ at $n$ general points, the evaluation of BPS polynomials at $q=-1$ yields Welschinger invariants, given by signed counts of real rational curves. We verify a relative version of this conjecture for all the surfaces $S_n$, and prove the main conjecture for n less than or equal to 6. This establishes a surprising link between real and complex curve enumerations, going via higher genus Gromov-Witten theory. Additionally, we propose a conjectural relationship between BPS polynomials and refined Donaldson–Thomas invariants. This is joint work with Hulya Arguz.



 

Mon, 16 Jun 2025
15:30
L3

Kinetic Optimal Transport

Prof Jan Maas
(IST Austria)
Abstract

We present a kinetic version of the optimal transport problem for probability measures on phase space. The central object is a second-order discrepancy between probability measures, analogous to the 2-Wasserstein distance, but based on the minimisation of the squared acceleration. We discuss the equivalence of static and dynamical formulations and characterise absolutely continuous curves of measures in terms of reparametrised solutions to the Vlasov continuity equation. This is based on joint work with Giovanni Brigati (ISTA) and Filippo Quattrocchi (ISTA).

Mon, 16 Jun 2025
16:00
C3

TBC

Charlotte Clare-Hunt
(University of Oxford)
Abstract

TBC

Tue, 17 Jun 2025
14:00
L6

A Reconstruction Theorem for coadmissible D-cap-modules

Finn Wiersig
(National University of Singapore)
Abstract

Let X be a smooth rigid-analytic variety. Ardakov and Wadsley introduced the sheaf D-cap of infinite order differential operators on X, along with the category of coadmissible D-cap-modules. In this talk, we present a Riemann–Hilbert correspondence for these coadmissible D-cap-modules. Specifically, we interpret a coadmissible D-cap-module as a p-adic differential equation, explain what it means to solve such an equation, and describe how to reconstruct the module from its solutions.

Tue, 17 Jun 2025

14:00 - 15:00
L4

TBA

Imre Leader
(University of Cambridge)
Tue, 17 Jun 2025
14:00
C6

Lagrangian mean curvature flow out of conical singularities

Spandan Ghosh
(University of Oxford)
Abstract

Lagrangian mean curvature flow (LMCF) is a way to deform Lagrangian submanifolds inside a Calabi-Yau manifold according to the negative gradient of the area functional. There are influential conjectures about LMCF due to Thomas-Yau and Joyce, describing the long-time behaviour of the flow, singularity formation, and how one may flow past singularities. In this talk, we will show how to flow past a conically singular Lagrangian by gluing in expanders asymptotic to the cone, generalizing an earlier result by Begley-Moore. We solve the problem by a direct P.D.E.-based approach, along the lines of recent work by Lira-Mazzeo-Pluda-Saez on the network flow. The main technical ingredient we use is the notion of manifolds with corners and a-corners, as introduced by Joyce following earlier work of Melrose.

Tue, 17 Jun 2025
15:00
L6

Density of Green metrics for hyperbolic groups

Didac Martinez-Granado
Abstract
I will present the "space of metrics of a group'', a metric space parameterizing the geometric actions of
an arbitrary hyperbolic group on Gromov hyperbolic spaces. Even for the surface group case, this space is much larger than
the classical Teichmüller space, encompassing negatively curved Riemannian metrics, geodesic currents,
random walks, and more. I will discuss how Green metrics—those associated with admissible random walks on the group—are dense in
 the space of metrics.  This is joint work in progress with Stephen Cantrell and Eduardo Reyes.
Tue, 17 Jun 2025
15:30
L4

Quivers and curves in higher dimensions

Hulya Arguz
(University of Georgia)
Abstract

Quiver Donaldson-Thomas invariants are integers determined by the geometry of moduli spaces of quiver representations. I will describe a correspondence between quiver Donaldson-Thomas invariants and Gromov-Witten counts of rational curves in toric and cluster varieties. This is joint work with Pierrick Bousseau.

Tue, 17 Jun 2025
16:00
C3

Roe algebras as complete coarse invariants

Diego Martinez
(KU Leuven)
Abstract

Roe algebras were introduced in the late 1990's in the study of indices of elliptic operators on (locally compact) Riemannian manifolds. Roe was particularly interested in coarse equivalences of metric spaces, which is a weaker notion than that of quasi-isometry. In fact, soon thereafter it was realized that the isomorphism class of these class of C*-algebras did not depend on the coarse equivalence class of the manifold. The converse, that is, whether this class is a complete invariant, became known as the 'Rigidity Problem for Roe algebras'. In this talk we will discuss an affirmative answer to this question, and how to approach its proof. This is based on joint work with Federico Vigolo.

Tue, 17 Jun 2025
16:00
L5

The emergence of entropy solutions for Euler alignment equations

Eitan Tadmor
(University of Maryland and Fondation Sciences Mathematiques de Paris LJLL, Sorbonne University)
Abstract

The hydrodynamic description for emergent behavior of interacting agents is governed by Euler alignment equations, driven by different protocols of pairwise communication kernels. A main question of interest is how short- vs. long-range interactions dictate the large-crowd, long-time dynamics. 

The equations lack closure for the pressure away thermal equilibrium. We identify a distinctive feature of Euler alignment -- a reversed direction of entropy. We discuss the role of a reversed entropy inequality in selecting mono-kinetic closure for emergence of strong solutions, prove the existence of such solutions, and characterize their related invariants which extend the 1-D notion of an “e” quantity.

Tue, 17 Jun 2025
16:00
L5

The emergence of entropy solutions for Euler alignment equations

Eitan Tadmor
(University of Maryland and Fondation Sciences Mathematiques de Paris LJLL, Sorbonne University)
Abstract

The hydrodynamic description for emergent behavior of interacting agents is governed by Euler alignment equations, driven by different protocols of pairwise communication kernels. A main question of interest is how short- vs. long-range interactions dictate the large-crowd, long-time dynamics. 

The equations lack closure for the pressure away thermal equilibrium. We identify a distinctive feature of Euler alignment -- a reversed direction of entropy. We discuss the role of a reversed entropy inequality in selecting mono-kinetic closure for emergence of strong solutions, prove the existence of such solutions, and characterize their related invariants which extend the 1-D notion of an “e” quantity.

Tue, 17 Jun 2025
16:00
L6

Quantum Chaos, Random Matrices, and Spread Complexity of Time Evolution.

Vijay Balasubramanian
(University of Pennsylvania)
Abstract

I will describe a measure of quantum state complexity defined by minimizing the spread of the wavefunction over all choices of basis. We can efficiently compute this measure, which displays universal behavior for diverse chaotic systems including spin chains, the SYK model, and quantum billiards.  In the minimizing basis, the Hamiltonian is tridiagonal, thus representing the dynamics as if they unfold on a one-dimensional chain. The recurrent and hopping matrix elements of this chain comprise the Lanczos coefficients, which I will relate through an integral formula to the density of states. For Random Matrix Theories (RMTs), which are believed to describe the energy level statistics of chaotic systems, I will also derive an integral formula for the covariances of the Lanczos coefficients. These results lead to a conjecture: quantum chaotic systems have Lanczos coefficients whose local means and covariances are described by RMTs. 
 

Wed, 18 Jun 2025

12:00 - 13:00
L3

Structures and Stability: Battling Beams, Kirigami Computing, and Eye Morphogenesis

Douglas Holmes
(Boston University College of Engineering)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Short Bio
Douglas Holmes is a Professor in the Department of Mechanical Engineering at Boston University. He received degrees in Chemistry from the University of New Hampshire (B.S. 2004), Polymer Science & Engineering from the University of Massachusetts, Amherst (M.S. 2005, Ph.D. 2009), and was a postdoctoral researcher in Mechanical & Aerospace Engineering at Princeton University. Prior to joining Boston University, he was an Assistant Professor of Engineering Science & Mechanics at Virginia Tech. His research group specializes in the mechanics of slender structures, with a focus on understanding and controlling how objects change shape. His work has been recognized by the NSF CAREER Award, the ASEE Ferdinand P. Beer and E. Russell Johnston Jr. Outstanding New Mechanics Educator Award, and the Theo de Winter Distinguished Faculty Fellowship.

Abstract

Structural mechanics plays a crucial role in soft matter physics, mechanobiology, metamaterials, pattern formation, active matter, and soft robotics. What unites these seemingly disparate topics is the natural balance that emerges between elasticity, geometry, and stability. This seminar will serve as a high-level overview of our work on several problems concerning the stability of structures. I will cover three topics: (1) shapeshifting shells; (2) mechanical metamaterials; and (3) elastogranular mechanics.


I will begin by discussing our development of a generalized, stimuli-responsive shell theory. (1) Non-mechanical stimuli including heat, swelling, and growth further complicate the nonlinear mechanics of shells, as simultaneously solving multiple field equations to capture multiphysics phenomena requires significant computational expense. We present a general shell theory to account for non-mechanical stimuli, in which the effects of the stimuli are
generalized into three forms: those that add mass to the shell, those that increase the area of the shell through the natural stretch, and those that change the curvature of the shell through the natural curvature. I will show how this model can capture the morphogenesis of the optic cup, the snapping of the Venus flytrap, leaf growth, and the buckling of electrically active polymer plates. (2) I will then discuss how cutting thin sheets and shells, a process
inspired by the art of kirigami, enables the design of functional mechanical metamaterials. We create linear actuators, artificial muscles, soft robotic grippers, and mechanical logic units by systematically cutting and stretching thin sheets. (3) Finally, if time permits, I will introduce our work on the interactions between elastic and granular matter, which we refer to as elastogranular mechanics. Such interactions occur across all lengths, from morphogenesis, to root growth, to stabilizing soil against erosion. We show how combining rocks and string in the absence of any adhesive we can create large, load bearing structures like columns, beams, and arches. I will finish with a general phase diagram for elastogranular behavior.

 

 

Wed, 18 Jun 2025
16:00
L6

TBA

Julian Wykowski
(University of Cambridge)
Abstract

TBA