Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
Today
12:00
Abstract

A great deal of effort has gone into trying to model social influence --- including the spread of behavior, norms, and ideas --- on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays the adoption --- i.e., change of state --- of each agent, which in turn delays the adoptions of its neighbors. With a homogeneous-distributed timer, in which all nodes exhibit the same amount of delay, adoption delays are also homogeneous, so the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation of the Watts threshold model, and we find good agreement with numerical computations. We also examine our new timer model on networks constructed from empirical data.

Link to arxiv paper: https://arxiv.org/abs/1706.04252

Today
12:00
Alexander Strohmaier
Abstract

I will review some classical results on geometric scattering
theory for linear hyperbolic evolution equations
on globally hyperbolic spacetimes and its relation to particle and charge
creation in QFT. I will then show that some index formulae for the
scattering matrix can be interpreted as a special case of the  Lorentzian
analog of the Atyiah-Patodi-Singer index theorem. I will also discuss a
local version of this theorem and its relation to anomalies in QFT.
(Joint work with C. Baer)

  • Quantum Field Theory Seminar
Today
14:00
Joseph Field
Abstract

Medical imaging is a key diagnostic tool, and is paramount for disease detection and for patient monitoring during ongoing care. Often, to reduce the amount of radiation that a patient is subjected to, there is a strong incentive to consider image reconstruction from incomplete sets of measurements, and so the imaging process is formulated as a compressed sensing problem.

In this talk, we will focus on compressed sensing for digital tomosynthesis (DTS), in which three-dimensional images are reconstructed from a set of two-dimensional X-ray projections. We first discuss a reconstruction approach for static bodies, with a particular interest in the choice of basis for the image representation. We will then focus on the need for accurate image reconstructions when the body of interest is not stationary, but is undergoing simple motion, discussing two different approaches for tackling this dynamic problem.

  • Numerical Analysis Group Internal Seminar
Today
14:30
Andrew Thompson
Abstract

I will describe a novel algorithm for computing the Walsh Hadamard Transform (WHT) which consists entirely of Haar wavelet transforms. The algorithm shares precisely the same serial complexity as the popular divide-and-conquer algorithm for the WHT. There is also a natural way to parallelize the algorithm which appears to have a number of attractive features.

  • Numerical Analysis Group Internal Seminar
Today
14:30
Zdenek Dvorak
Abstract

A class C of graphs has polynomial expansion if there exists a polynomial p such that for every graph G from C and for every integer r, each minor of G obtained by contracting disjoint subgraphs of radius at most r is p(r)-degenerate. Classes with polynomial expansion exhibit interesting structural, combinatorial, and algorithmic properties. In the talk, I will survey these properties and propose further research directions.

  • Combinatorial Theory Seminar
Today
15:45
Wenzhe Yang
Abstract

In mirror symmetry, the prepotential on the Kahler side has an expansion, the constant term of which is a rational multiple of zeta(3)/(2 pi i)^3 after an integral symplectic transformation. In this talk I will explain the connection between this constant term and the period of a mixed Hodge-Tate structure constructed from the limit MHS at large complex structure limit on the complex side. From Ayoub’s works on nearby cycle functor, there exists an object of Voevodsky’s category of mixed motives such that the mixed Hodge-Tate structure is expected to be a direct summand of the third cohomology of its Hodge realisation. I will present the connections between this constant term and conjecture about how mixed Tate motives sit inside Voevodsky’s category, which will also provide a motivic interpretation to the occurrence of zeta(3) in prepotential. 

  • Algebraic Geometry Seminar
Today
16:00
Sophia Saller
Abstract

Understanding the distribution of subgraph counts has long been a central question in the study of random graphs. In this talk, we consider the distribution of Sn, the number of K4 subgraphs, in the Erdös Rényi random graph G(n, p). When the edge probability p \in (0, 1) is constant, a classical central limit theorem for Sn states that (Sn−µn)/σn converges in distribution. We establish a stronger form of convergence, namely the corresponding local limit theorem, which is joint work with O. Riordan.
 

  • Combinatorial Theory Seminar
Today
16:00
Lotte Kestner
Abstract

 

(Joint with Gareth Boxall) In this talk I will introduce some properties of distal theories. I will remark that distality is preserved neither under reducts nor expansions of the language. I will then go on to discuss a recent result that the Shelah expansion of a theory is distal if and only if the theory itself is distal. 

Pages

Add to My Calendar