Past PDE CDT Lunchtime Seminar

17 June 2021
12:00
Alexis Michelat

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

The integral of mean curvature squared is a conformal invariant that measures the distance from a given immersion to the standard embedding of a round sphere. Following work of Robert Bryant who showed that all Willmore spheres in the 3-sphere are conformally minimal, Robert Kusner proposed in the early 1980s to use the Willmore energy to obtain an “optimal” sphere eversion, called the min-max sphere eversion.

We will present a method due to Tristan Rivière that permits to tackle a wide variety of min-max problems, including ones about the Willmore energy. An important step to solve Kusner’s conjecture is to determine the Morse index of branched Willmore spheres, and we show that the Morse index of conformally minimal branched Willmore spheres is equal to the index of a canonically associated matrix whose dimension is equal to the number of ends of the dual minimal surface.

  • PDE CDT Lunchtime Seminar
10 June 2021
17:00
Casey Rodriguez

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

Elastic strings are among the simplest one-dimensional continuum bodies and have a rich mechanical and mathematical theory dating back to the derivation of their equations of motion by Euler and Lagrange. In classical treatments, the string is either completely extensible (tensile force produces elongation) or completely inextensible (every segment has a fixed length, regardless of the motion). However, common experience is that a string can be stretched (is extensible), and after a certain amount of tensile force is applied the stretch of the string is maximized (becomes inextensible). In this talk, we discuss a model for these stretch-limited elastic strings, in what way they model elastic behavior, the well-posedness and asymptotic stability of certain simple motions, and (many) open questions.

  • PDE CDT Lunchtime Seminar
13 May 2021
12:00
Yufei Zhang

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

In this talk, we discuss the feasibility of algorithms based on deep artificial neural networks (DNN) for the solution of high-dimensional PDEs, such as those arising from stochastic control and games. In the first part, we show that in certain cases, DNNs can break the curse of dimensionality in representing high-dimensional value functions of stochastic control problems. We then exploit policy iteration to reduce the associated nonlinear PDEs into a sequence of linear PDEs, which are then further approximated via a multilayer feedforward neural network ansatz. We establish that in suitable settings the numerical solutions and their derivatives converge globally, and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration. Numerical experiments on Zermelo's navigation problem and on consensus control of interacting particle systems are presented to demonstrate the effectiveness of the method. This is joint work with Kazufumi Ito, Christoph Reisinger and Wolfgang Stockinger.

  • PDE CDT Lunchtime Seminar
11 March 2021
12:00
Mathias Schäffner

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

I will discuss regularity properties for solutions of linear second order non-uniformly elliptic equations in divergence form. Assuming certain integrability conditions on the coefficient field, we obtain local boundedness and validity of Harnack inequality. The assumed integrability assumptions are sharp and improve upon classical results due to Trudinger from the 1970s.

As an application of the local boundedness result, we deduce a quenched invariance principle for random walks among random degenerate conductances. If time permits I will discuss further regularity results for nonlinear non-uniformly elliptic variational problems.

  • PDE CDT Lunchtime Seminar
25 February 2021
12:00
Arianna Giunti

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

We consider the homogenization of a Stokes system in a domain having many small random holes. This model mainly arises from problems of solid-fluid interaction (e.g. the flow of a viscous and incompressible fluid through a porous medium). We aim at the rigorous derivation of the homogenization limit both in the Brinkmann regime and in the one of Darcy’s law. In particular, we focus on holes that are distributed according to probability measures that allow for overlapping and clustering phenomena.

  • PDE CDT Lunchtime Seminar
18 February 2021
17:00
Cole Graham

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

We explore one facet of an old problem: the approximation of hyperbolic conservation laws by viscous counterparts. While qualitative convergence results are well-known, quantitative rates for the inviscid limit are less common. In this talk, we consider the simplest case: a one-dimensional scalar strictly-convex conservation law started from "generic" smooth initial data. Using a matched asymptotic expansion, we quantitatively control the inviscid limit up to the time of first shock. We conclude that the inviscid limit has a universal character near the first shock. This is joint work with Sanchit Chaturvedi.

  • PDE CDT Lunchtime Seminar
4 February 2021
12:00
Dr Matias G. Delgadino
Abstract

Phase transitions are present in a wide array of systems ranging from traffic to machine learning algorithms. In this talk, we will relate the concept of phase transitions to the convexity properties of the associated thermodynamic energy. Motivated by noisy stochastic gradient descent in supervised learning, we will consider the problem of understanding the thermodynamic limit of exchangeable weakly interacting diffusions (AKA propagation of chaos) from an energetic perspective. The strategy will be to exploit the 2-Wasserstein gradient flow structure associated with the thermodynamic energy in the infinite particle setting. Using this perspective, we will show how the convexity properties of the thermodynamic energy affects the homogenization limit or the stability of the log-Sobolev inequality.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
21 January 2021
12:00
Ioannis Papadopoulos / Jonah Duncan
Abstract

A topology optimization problem for Stokes flow finds the optimal material distribution of a fluid in Stokes flow that minimizes the fluid’s power dissipation under a volume constraint. In 2003, T. Borrvall and J. Petersson [1] formulated a nonconvex optimization problem for this objective. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this talk, we will extend and refine their numerical analysis. In particular, we will show that there exist finite element functions, satisfying the necessary first-order conditions of optimality, that converge strongly to each isolated local minimizer of the problem.

/

Fully nonlinear PDEs involving the eigenvalues of matrix-valued differential operators (such as the Hessian) have been the subject of intensive study over the last few decades, since the seminal work of Caffarelli, Kohn, Nirenberg and Spruck. In this talk I will discuss some recent joint work with Luc Nguyen on the regularity theory for a large class of these equations, with a particular emphasis on a special case known as the sigma_k-Yamabe equation, which arises in conformal geometry. 

 

[1] T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77–107. doi:10.1002/fld.426.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
19 November 2020
12:00
Ph.D. Gianmarco Sperone
Abstract

We analyze the steady motion of a viscous incompressible fluid in a two- and three-dimensional channel containing an obstacle through the Navier-Stokes equations under different types of boundary conditions. In the 2D case we take constant non-homogeneous Dirichlet boundary data in a (virtual) square containing the obstacle, and emphasize the connection between the appearance of lift and the unique solvability of Navier-Stokes equations. In the 3D case we consider mixed boundary conditions: the inflow is given by a fairly general datum and the flow is assumed to satisfy a constant traction boundary condition on the outlet. In the absence of external forcing, explicit bounds on the inflow velocity guaranteeing existence and uniqueness of such steady motion are provided after estimating some Sobolev embedding constants and constructing a suitable solenoidal extension of the inlet velocity. In the 3D case, this solenoidal extension is built through the Bogovskii operator and explicit bounds on its Dirichlet norm (in terms of the geometric parameters of the obstacle) are found by solving a variational problem involving the infinity-Laplacian.


The talk accounts for results obtained in collaboration with Filippo Gazzola and Ilaria Fragalà (both at Politecnico di Milano).

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
5 November 2020
12:00
Abstract

Solving kinetic or related models with high-dimensional random parameters has been a challenging problem. In this talk, we will discuss how to employ the bi-fidelity stochastic collocation and choose efficient low-fidelity models in order to solve a class of multi-scale kinetic equations with uncertainties, including the Boltzmann equation, linear transport and the Vlasov-Poisson equation. In addition, some error analysis for the bi-fidelity method based on these PDEs will be presented. Finally, several numerical examples are shown to validate the efficiency and accuracy of the proposed method.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar

Pages