Past PDE CDT Lunchtime Seminar

25 February 2021
12:00
Arianna Giunti

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

We consider the homogenization of a Stokes system in a domain having many small random holes. This model mainly arises from problems of solid-fluid interaction (e.g. the flow of a viscous and incompressible fluid through a porous medium). We aim at the rigorous derivation of the homogenization limit both in the Brinkmann regime and in the one of Darcy’s law. In particular, we focus on holes that are distributed according to probability measures that allow for overlapping and clustering phenomena.

  • PDE CDT Lunchtime Seminar
18 February 2021
17:00
Cole Graham

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

We explore one facet of an old problem: the approximation of hyperbolic conservation laws by viscous counterparts. While qualitative convergence results are well-known, quantitative rates for the inviscid limit are less common. In this talk, we consider the simplest case: a one-dimensional scalar strictly-convex conservation law started from "generic" smooth initial data. Using a matched asymptotic expansion, we quantitatively control the inviscid limit up to the time of first shock. We conclude that the inviscid limit has a universal character near the first shock. This is joint work with Sanchit Chaturvedi.

  • PDE CDT Lunchtime Seminar
4 February 2021
12:00
Dr Matias G. Delgadino
Abstract

Phase transitions are present in a wide array of systems ranging from traffic to machine learning algorithms. In this talk, we will relate the concept of phase transitions to the convexity properties of the associated thermodynamic energy. Motivated by noisy stochastic gradient descent in supervised learning, we will consider the problem of understanding the thermodynamic limit of exchangeable weakly interacting diffusions (AKA propagation of chaos) from an energetic perspective. The strategy will be to exploit the 2-Wasserstein gradient flow structure associated with the thermodynamic energy in the infinite particle setting. Using this perspective, we will show how the convexity properties of the thermodynamic energy affects the homogenization limit or the stability of the log-Sobolev inequality.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
21 January 2021
12:00
Ioannis Papadopoulos / Jonah Duncan
Abstract

A topology optimization problem for Stokes flow finds the optimal material distribution of a fluid in Stokes flow that minimizes the fluid’s power dissipation under a volume constraint. In 2003, T. Borrvall and J. Petersson [1] formulated a nonconvex optimization problem for this objective. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this talk, we will extend and refine their numerical analysis. In particular, we will show that there exist finite element functions, satisfying the necessary first-order conditions of optimality, that converge strongly to each isolated local minimizer of the problem.

/

Fully nonlinear PDEs involving the eigenvalues of matrix-valued differential operators (such as the Hessian) have been the subject of intensive study over the last few decades, since the seminal work of Caffarelli, Kohn, Nirenberg and Spruck. In this talk I will discuss some recent joint work with Luc Nguyen on the regularity theory for a large class of these equations, with a particular emphasis on a special case known as the sigma_k-Yamabe equation, which arises in conformal geometry. 

 

[1] T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77–107. doi:10.1002/fld.426.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
19 November 2020
12:00
Ph.D. Gianmarco Sperone
Abstract

We analyze the steady motion of a viscous incompressible fluid in a two- and three-dimensional channel containing an obstacle through the Navier-Stokes equations under different types of boundary conditions. In the 2D case we take constant non-homogeneous Dirichlet boundary data in a (virtual) square containing the obstacle, and emphasize the connection between the appearance of lift and the unique solvability of Navier-Stokes equations. In the 3D case we consider mixed boundary conditions: the inflow is given by a fairly general datum and the flow is assumed to satisfy a constant traction boundary condition on the outlet. In the absence of external forcing, explicit bounds on the inflow velocity guaranteeing existence and uniqueness of such steady motion are provided after estimating some Sobolev embedding constants and constructing a suitable solenoidal extension of the inlet velocity. In the 3D case, this solenoidal extension is built through the Bogovskii operator and explicit bounds on its Dirichlet norm (in terms of the geometric parameters of the obstacle) are found by solving a variational problem involving the infinity-Laplacian.


The talk accounts for results obtained in collaboration with Filippo Gazzola and Ilaria Fragalà (both at Politecnico di Milano).

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
5 November 2020
12:00
Abstract

Solving kinetic or related models with high-dimensional random parameters has been a challenging problem. In this talk, we will discuss how to employ the bi-fidelity stochastic collocation and choose efficient low-fidelity models in order to solve a class of multi-scale kinetic equations with uncertainties, including the Boltzmann equation, linear transport and the Vlasov-Poisson equation. In addition, some error analysis for the bi-fidelity method based on these PDEs will be presented. Finally, several numerical examples are shown to validate the efficiency and accuracy of the proposed method.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
22 October 2020
12:00
André Guerra / Lukas Koch
Abstract

I will present a nonlinear version of the open mapping principle which applies to constant-coefficient PDEs which are both homogeneous and weak* stable. An example of such a PDE is the Jacobian equation. I will discuss the consequences of such a result for the Jacobian and its relevance towards an answer to a long-standing problem due to Coifman, Lions, Meyer and Semmes. This is based on joint work with Lukas Koch and Sauli Lindberg.

/

I present a general nonlinear open mapping principle suited to applications to scale-invariant PDEs in regularity regimes where the equations are stable under weak* convergence. As an application I show that, for any $p < \infty$, the set of initial data for which there are dissipative weak solutions in $L^p_t L^2_x$ is meagre in the space of solenoidal L^2 fields. This is based on joint work with A. Guerra (Oxford) and S. Lindberg (Aalto).

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
15 October 2020
12:00
James Kohout / Jeremy Wu
Abstract

In the study of geometric flows it is often important to understand when a flow which converges along a sequence of times going to infinity will, in fact, converge along every such sequence of times to the same limit. While examples of finite dimensional gradient flows that asymptote to a circle of critical points show that this cannot hold in general, a positive result can be obtained in the presence of a so-called Lojasiewicz-Simon inequality. In this talk we will introduce this problem of uniqueness of asymptotic limits and discuss joint work with Melanie Rupflin and Peter M. Topping in which we examined the situation for a geometric flow that is designed to evolve a map describing a closed surface in a given target manifold into a parametrization of a minimal surface.

/

The Landau equation is an important PDE in kinetic theory modelling plasma particles in a gas. It can be derived as a limiting process from the famous Boltzmann equation. From the mathematical point of view, the Landau equation can be very challenging to study; many partial results require, for example, stochastic analysis as well as a delicate combination of kinetic and parabolic theory. The major open question is uniqueness in the physically relevant Coulomb case. I will present joint work with Jose Carrillo, Matias Delgadino, and Laurent Desvillettes where we cast the Landau equation as a generalized gradient flow from the optimal transportation perspective motivated by analogous results on the Boltzmann equation. A direct outcome of this is a numerical scheme for the Landau equation in the spirit of de Giorgi and Jordan, Kinderlehrer, and Otto. An extended area of investigation is to use the powerful gradient flow techniques to resolve some of the open problems and recover known results.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
18 June 2020
12:00
Sebastian Schwarzacher
Abstract

I introduce a recently developed variational approach for hyperbolic PDE's. The method allows to show the existence of weak solutions to fluid-structure interactions where a visco-elastic bulk solid is interacting with an incompressible fluid governed by the unsteady Navier Stokes equations. This is a joint work with M. Kampschulte and B. Benesova.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar
11 June 2020
12:00
Abstract

In the talk, we study the Navier–Stokes-like problems for the flows of homogeneous incompressible fluids. We introduce a new type of boundary condition for the shear stress tensor, which includes an auxiliary stress function and the time derivative of the velocity. The auxiliary stress function serves to relate the normal stress to the slip velocity via rather general maximal monotone graph. In such way, we are able to capture the dynamic response of the fluid on the boundary. Also, the constitutive relation inside the domain is formulated implicitly. The main result is the existence analysis for these problems.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • PDE CDT Lunchtime Seminar

Pages