I will prove the 2d Biot-Savart law for the vorticity being an unbounded measure $\mu$, i.e. such that $\mu(\mathbb{R}^2)=\infty$, and show how can one infer some useful information concerning Kaden's spirals using it. Vorticities being unbounded measures appear naturally in the engineering literature as self-similar approximations of 2d Euler flows, see for instance Kaden's or Prandtl's spirals. Mathematicians are interested in such objects since they seem to be related to the questions of well-posedness of Delort's solutions of the 2d vortex sheet problem for the Euler equation. My talk is based on a common paper with K.Oleszkiewicz, M. Preisner and M. Szumanska.

# Past PDE CDT Lunchtime Seminar

In this talk we consider several scenarios involving the interaction among incompressible fluids of different nature. The main concern is the dynamics of the free boundary separating the fluids, which evolves with the velocity flow. The important question to address is whether the regularity is preserved in time or, on the other hand, the system develops singularities. We focus on Navier-Stokes models, where the viscosity of the fluids play a crucial role. At first showing results of finite time blow-up for the case of vacuum-fluid interaction. Later discussing new recent results on global existence for 1996 P.L. Lions' conjecture for density patches evolving by inhomogeneous Navier-Stokes equations.

For the North Analysis British Seminar, see: https://www.maths.ox.ac.uk/node/29687

We will talk about the Cauchy problem of the three-dimensional isentropic compressible Navier-Stokes equations. When viscosity coefficients are given as a constant multiple of density's power, based on some analysis of the nonlinear structure of this system, by introducing some new variables and the initial layer compatibility conditions, we identify the class of initial data admitting a local regular solution with far field vacuum and finite energy in some inhomogeneous Sobolev spaces, which solves an open problem of degenerate viscous flow partially mentioned by Bresh-Desjardins-Metivier (2006, Anal. Simi. Fluid Dynam.), Jiu-Wang-Xin (2014, JMFM) and so on. Moreover, in contrast to the classical well-posedness theory in the case of the constant viscosity, we show that one can not obtain any global classical solution whose $L^\infty$ norm of $u$ decays to zero as time $t$ goes to infinity under the assumptions on the conservation laws of total mass and momentum.

In this talk I will present the recent developments in the topic of existence of solutions to the two-fluid systems. I will discuss the application of approach developed by P.-L. Lions and E. Feireisl and explain the limitations of this technique in the context of multi-component flow models. A particular example of such a model is two-fluids Stokes system with single velocity field and two densities, and with an algebraic pressure law closure. The existence result that uses the compactness criterion introduced for the Navier-Stokes system by D. Bresch and P.-E. Jabin will be presented. I will also mention an innovative construction of solutions relying on the G. Crippa and C. DeLellis stability estimates for the transport equation.

Novel machine learning techniques based on deep learning, i.e., the data-driven manipulation of neural networks, have reported remarkable results in many areas such as image classification, game intelligence, or speech recognition. Driven by these successes, many scholars have started using them in areas which do not focus on traditional machine learning tasks. For instance, more and more researchers are employing neural networks to develop tools for the discretisation and solution of partial differential equations. Two reasons can be identified to be the driving forces behind the increased interest in neural networks in the area of the numerical analysis of PDEs. On the one hand, powerful approximation theoretical results have been established which demonstrate that neural networks can represent functions from the most relevant function classes with a minimal number of parameters. On the other hand, highly efficient machine learning techniques for the training of these networks are now available and can be used as a black box. In this talk, we will give an overview of some approaches towards the numerical treatment of PDEs with neural networks and study the two aspects above. We will recall some classical and some novel approximation theoretical results and tie these results to PDE discretisation. Afterwards, providing a counterpoint, we analyse the structure of network spaces and deduce considerable problems for the black box solver. In particular, we will identify a number of structural properties of the set of neural networks that render optimisation over this set especially challenging and sometimes impossible. The talk is based on joint work with Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, Felix Voigtlaender, and Mones Raslan

The focus of this talk is the regularity theory for time-harmonic Maxwell's equations with complex anisotropic parameters. By using the Helmholtz decomposition of the fields, we show how the problem can be completely reduced to a regularity question for elliptic equations, for which classical results may be applied. In particular, we prove the Hölder regularity of solutions under minimal assumptions on the coefficients.

I am going to report on some developments in regularity theory of nonlinear, degenerate equations, with special emphasis on estimates involving linear and nonlinear potentials. I will cover three main cases: degenerate nonlinear equations, systems, non-uniformly elliptic operators.

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains a fundamental open problem. In this talk we present the rigorous justification of the quasineutral limit for very small but rough perturbations of analytic initial data for the Vlasov-Poisson equation in dimensions 1, 2, and 3. Also, we discuss a recent result in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

This talk is concerned with quantitative periodic homogenization in domains with boundaries. The quantitative analysis near boundaries leads to the study of boundary layers correctors, which have in general a nonperiodic structure. The interaction between the boundary and the microstructure creates geometric resonances, making the study of the asymptotics or continuity properties particularly challenging. The talk is based on work with S. Armstrong, T. Kuusi and J.-C. Mourrat, as well as work by Z. Shen and J. Zhuge