The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.

# Past Algebra Seminar

A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.

The prime spectrum of a quantum algebra has a finite stratification in terms

of a set of distinguished primes called H-primes, and we can study these

strata by passing to certain nice localizations of the algebra. H-primes

are now starting to show up in some surprising new areas, including

combinatorics (totally nonnegative matrices) and physics, and we can borrow

techniques from these areas to answer questions about quantum algebras and

their localizations. In particular, we can use Grassmann necklaces -- a

purely combinatorial construction -- to study the topological structure of

the prime spectrum of quantum matrices.

The formal degree is a fundamental invariant of a discrete series representation which generalizes the notion of dimension from finite dimensional representations. For discrete series with unipotent cuspidal support, a formula for formal degrees, conjectured by Hiraga-Ichino-Ikeda, was verified by Opdam (2015). For split exceptional groups, this formula was previously known from the work of Reeder (2000). I will present a different interpretation of the formal degrees of unipotent discrete series in terms of the nonabelian Fourier transform (introduced by Lusztig in the character theory of finite groups of Lie type) and certain invariants arising in the elliptic theory of the affine Weyl group. This interpretation relates to recent conjectures of Lusztig about `almost characters' of p-adic groups. The talk is based on joint work with Eric Opdam.

Graded affine Hecke algebras were introduced by Lusztig for studying the representation theory of p-adic groups. In particular, some problems about extensions of representations of p-adic groups can be transferred to problems in the graded Hecke algebra setting. The study of extensions gives insight to the structure of various reducible modules. In this talk, I shall discuss some methods of computing Ext-groups for graded Hecke algebras.

The talk is based on arXiv:1410.1495, arXiv:1510.05410 and forthcoming work.

Abstract: This is a joint work with E. Breuillard.

A conjecture of Breuillard asserts that for every positive integer d, there is a positive constant c such that the following holds. Let S be a finite subset of GL(d,C) that generates a group, which is not virtually nilpotent. Then |S^n|>exp(cn) for all n.

Considering an algebraic number a that is not a root of unity and the semigroup generated by the affine transformations x-> ax+1, x-> ax+1, the above conjecture implies that the Mahler measure of a is at least 1+c' for some c'>0 depending on c. This property is known as Lehmer's conjecture.

I will talk about the converse of this implication, namely that Lehmer's conjecture implies the uniform growth conjecture of

Breuillard.

Our work (which is joint with Simon Smith) began as a study of the structure of infinite permutation groups $G$ in which point stabilisers are finite and all infinite normal subgroups are transitive. That led to two variations.

One is the generalisation in which point stabilisers are merely assumed to satisfy min-{\sc N}, the minimal condition on normal subgroups. The groups $G$ are then of two kinds. Either they have a maximal finite normal subgroup, modulo which they have either one or two minimal non-trivial normal subgroups, or they have a regular normal subgroup $M$ which is a divisible abelian $p$-group of finite rank. In the latter case the point stabilisers are finite and act irreducibly on the socle of~$M$. This leads to our second variation, which is a study of the finite linear groups that can arise.

Our work (which is joint with Simon Smith) began as a study of the structure of infinite permutation groups $G$ in which point stabilisers are finite and all infinite normal subgroups are transitive. That led to two variations. One is the generalisation in which point stabilisers are merely assumed to satisfy min-{\sc N}, the minimal condition on normal subgroups. The groups $G$ are then of two kinds. Either they have a maximal finite normal subgroup, modulo which they have either one or two minimal non-trivial normal subgroups, or they have a regular normal subgroup $M$ which is a divisible abelian $p$-group of finite rank. In the latter case the point stabilisers are finite and act irreducibly on the socle of~$M$. This leads to our second variation, which is a study of the finite linear groups that can arise.