Forthcoming events in this series


Thu, 19 Jun 2025
12:00
C6

Local behaviour of solutions to non-local kinetic equations

Amélie Loher
(University of Cambridge)
Abstract

We will discuss local regularity properties for solutions to non-local equations naturally arising in kinetic theory. We will focus on the Strong Harnack inequality for global solutions to a non-local kinetic equation in divergence form. We will explain the connection to the Boltzmann equation and we will mention a few consequences on the asymptotic behaviour of the solutions.

Thu, 12 Jun 2025
12:00
C6

Recent progress on the structure of metric currents.

Emanuele Caputo
(University of Warwick)
Abstract

The goal of the talk is to give an overview of the metric theory of currents by Ambrosio-Kirchheim, together with some recent progress in the setting of Banach spaces. Metric currents are a generalization to the metric setting of classical currents. Classical currents are the natural generalization of oriented submanifolds, as distributions play the same role for functions. We present a structure result for 1-metric currents as superposition of 1-rectifiable sets in Banach spaces, which generalizes a previous result by Schioppa. This is based on an approximation result of metric 1-currents with normal 1-currents. This is joint work with D. Bate, J. Takáč, P. Valentine, and P. Wald (Warwick).

Thu, 05 Jun 2025
12:00
C6

A modeling perspective on retinal degeneration

Naoufel Cresson
(Sorbonne Université)
Abstract

This talk introduces an ongoing research project focused on building mechanistic models to study retinal degeneration, with a particular emphasis on the geometric aspects of the disease progression.

As we develop a computational model for retinal degeneration, we will explore how cellular materials behave and how wound-healing mechanisms influence disease progression. Finally, we’ll detail the numerical methods used to simulate these processes and explain how we work with medical data.

Ongoing research in collaboration with the group of M. Paques (Paris Eye Imaging - Quinze Vingts National Ophthalmology Hospital and Vision Institute).

Thu, 22 May 2025
12:00
C6

Homogenisation for compressible fluids

Pierre Gonin-Joubert
(Université Claude Bernard Lyon 1)
Abstract

Several physical models are available to understand the dynamics of fluid mixtures, including the so-called Baer-Nunziato models. The partial differential equations associated with these models look like those of Navier-Stokes, with the addition of new relaxation terms. One strategy to obtain these models is homogenisation: starting from a mesoscopic mixture, where two pure fluids satisfying the compressible Navier-Stokes equations share the space between them, a change of scale is performed to obtain a macroscopic mixture, where the two fluids can coexist at any point in space.

This problem concerns the study of the Navier-Stokes equations with strongly oscillating initial data. We'll start by explaining some results in this framework, in one dimension of space and on the torus, for barotropic fluids. We will then detail the various steps involved in demonstrating homogenisation. Finally, we'll explain how to adapt this reasoning to homogenisation for perfect gases, with and without heat conduction.

Wed, 21 May 2025
12:00
C1

On the converse of Pansu’s differentiability theorem

Andrea Merlo
(Universidad del País Vasco)
Abstract

In this talk I will present two new results concerning differentiability of Lipschitz maps between Carnot groups. The former is a suitable adaptation of Pansu-Rademacher differentiability theorem to general Radon measures. More precisely we construct a suitable bundle associated to the measure along which Lipschitz maps are differentiable, very much in the spirit of the results of Alberti-Marchese. The latter is the converse of Pansu’s theorem. Namely, let G be a Carnot group and μ a Radon measure on G. Suppose further that every Lipschitz map between G and H, some other Carnot group, is Pansu differentiable μ-almost everywhere. We show that μ must be absolutely continuous with respect to the Haar measure of G. This is a joint work with Guido De Philippis, Andrea Marchese, Andrea Pinamonti and Filip Rindler.

This new sub-Riemannian result will be an excuse to present and discuss the techniques employed in Euclidean spaces to prove the converse of Rademacher's theorem.

Thu, 15 May 2025
12:00
C6

Recent progress on the inverse scattering theory for ideal Alfvén waves

Mengni Li
(Southeast University, Nanjing)
Abstract

The Alfvén waves are fundamental wave phenomena in magnetized plasmas. Mathematically, the dynamics of Alfvén waves are governed by a system of nonlinear partial differential equations called the magnetohydrodynamics (MHD) equations. Let us introduce some recent results about inverse scattering of Alfvén waves in ideal MHD, which are intended to establish the relationship between Alfvén waves emanating from the plasma and their scattering fields at infinities.The proof is mainly based on the weighted energy estimates. Moreover, the null structure inherent in MHD equations is thoroughly examined, especially when we estimate the pressure term.

Thu, 08 May 2025
12:00
C6

Sard properties for polynomial maps in infinite dimension

Daniele Tiberio
(University of Padova)
Abstract

Sard’s theorem asserts that the set of critical values of a smooth map from one Euclidean space to another one has measure zero. A version of this result for infinite-dimensional Banach manifolds was proven by Smale for maps with Fredholm differential. However, when the domain is infinite dimensional and the range is finite dimensional, the result is not true – even under the assumption that the map is “polynomial” – and a general theory is still lacking. In this seminar, I will provide sharp quantitative criteria for the validity of Sard’s theorem in this setting, obtained combining a functional analysis approach with new tools in semialgebraic geometry. As an application, I will present new results on the Sard conjecture in sub-Riemannian geometry. Based on a joint work with A. Lerario and L. Rizzi.

Thu, 13 Mar 2025
12:00
L6

Mixed-type Partial Differential Equations and the Isometric Immersions Problem

Siran Li
(Shanghai Jiao Tong University)
Abstract

This talk is about a classical problem in differential geometry and global analysis: the isometric immersions of Riemannian manifolds into Euclidean spaces. We focus on the PDE approach to isometric immersions, i.e., the analysis of Gauss--Codazzi--Ricci equations, especially in the regime of low Sobolev regularity. Such equations are not purely elliptic, parabolic, or hyperbolic in general, hence calling for analytical tools for PDEs of mixed types. We discuss various recent contributions -- in line with the pioneering works by G.-Q. Chen, M. Slemrod, and D. Wang [Proc. Amer. Math. Soc. (2010); Comm. Math. Phys. (2010)] -- on the weak continuity of Gauss--Codazzi--Ricci equations, the weak stability of isometric immersions, and the fundamental theorem of submanifold theory with low regularity. Two mixed-type PDE techniques are emphasised throughout these developments: the method of compensated compactness and the theory of Coulomb--Uhlenbeck gauges.


 
Thu, 27 Feb 2025
12:00
C6

Aggregation-diffusion equations with saturation

Alejandro Fernández-Jiménez
(University of Oxford)
Abstract

On this talk we will focus on the family of aggregation-diffusion equations

 

$$\frac{\partial \rho}{\partial t} = \mathrm{div}\left(\mathrm{m}(\rho)\nabla (U'(\rho) + V) \right).$$

 

Here, $\mathrm{m}(s)$ represents a continuous and compactly supported nonlinear mobility (saturation) not necessarily concave. $U$ corresponds to the diffusive potential and includes all the porous medium cases, i.e. $U(s) = \frac{1}{m-1} s^m$ for $m > 0$ or $U(s) = s \log (s)$ if $m = 1$. $V$ corresponds to the attractive potential and it is such that $V \geq 0$, $V \in W^{2, \infty}$.

 

Taking advantage of a family of approximating problems, we show the existence of $C_0$-semigroups of $L^1$ contractions. We study the $\omega$-limit of the problem, its most relevant properties, and the appearance of free boundaries in the long-time behaviour. Furthermore, since this problem has a formal gradient-flow structure, we discuss the local/global minimisers of the corresponding free energy in the natural topology related to the set of initial data for the $L^\infty$-constrained gradient flow of probability densities. Finally, we explore the properties of a corresponding implicit finite volume scheme introduced by Bailo, Carrillo and Hu.

 

The talk presents joint work with Prof. J.A. Carrillo and Prof. D.  Gómez-Castro.

Thu, 20 Feb 2025
12:00
C6

Critical thresholds in pressureless Euler-Poisson equations with background states

Young-Pil Choi
(Yonsei Univeristy)
Abstract

In this talk, we discuss the critical threshold phenomena in a large class of one-dimensional pressureless Euler-Poisson (EP) equations with non-vanishing background states. First, we establish local-in-time well-posedness in appropriate regularity spaces, specifically involving negative Sobolev spaces, which are adapted to ensure the neutrality condition holds. We show that this negative homogeneous Sobolev regularity is necessary by proving an ill-posedness result in classical Sobolev spaces when this condition is absent. Next, we examine the critical threshold phenomena in pressureless EP systems that satisfy the neutrality condition. We show that, in the case of attractive forcing, the neutrality condition further restricts the sub-critical region, reducing it to a single line in the phase plane. Finally, we provide an analysis of the critical thresholds for repulsive EP systems with variable backgrounds. As an application, we analyze the critical thresholds for the damped EP system in the context of cold plasma ion dynamics, where the electron density is governed by the Maxwell-Boltzmann relation. This talk is based on joint work with Dong-ha Kim, Dowan Koo, and Eitan Tadmor.

Thu, 30 Jan 2025
12:00
C6

Strong convergence of the vorticities in the 2D viscosity limit on a bounded domain

Jakub Woźnicki
(University of Warsaw)
Abstract

In the vanishing viscosity limit from the Navier-Stokes to Euler equations on domains with boundaries, a main difficulty comes from the mismatch of boundary conditions and, consequently, the possible formation of a boundary layer. Within a purely interior framework, Constantin and Vicol showed that the two-dimensional viscosity limit is justified for any arbitrary but finite time under the assumption that on each compactly contained subset of the domain, the enstrophies are bounded uniformly along the viscosity sequence. Within this framework, we upgrade to local strong convergence of the vorticities under a similar assumption on the p-enstrophies, p > 2. The talk is based on a recent publication with Christian Seis and Emil Wiedemann.

Thu, 28 Nov 2024
12:00
C6

Magnetic Brunn-Minkowski and Borell-Brascamp-Lieb inequalities on Riemannian manifolds

Rotem Assouline
(The Weizmann Institute of Science)
Abstract

The Brunn-Minkowski inequality gives a lower bound on the volume of the set of midpoints of line segments joining two sets. On a Riemannian manifold, line segments are replaced by geodesic segments, and the Brunn-Minkowski inequality characterizes manifolds with nonnegative Ricci curvature. I will present a generalization of the Riemannian Brunn-Minkowski inequality where geodesics are replaced by magnetic geodesics, which are minimizers of a functional given by length minus the integral of a fixed one-form on the manifold. The Brunn-Minkowski inequality is then equivalent to nonnegativity of a suitably defined magnetic Ricci curvature. More generally, I will present a magnetic version of the Borell-Brascamp-Lieb inequality of Cordero-Erausquin, McCann and Schmuckenschläger. The proof uses the needle decomposition technique.

Thu, 21 Nov 2024
12:00
C6

Failure of the Measure Contraction Property on the Martinet Flat Structure

Samuel Borza
(University of Vienna)
Abstract

The Martinet flat structure is one of the simplest sub-Riemannian manifolds that has many non-Riemannian features: it is not equiregular, it has abnormal geodesics, and the Carnot-Carathéodory sphere is not sub-analytic. I will review how the geometry of the Martinet flat structure is tied to the equations of the pendulum. Surprisingly, the Measure Contraction Property (a weak synthetic formulation of Ricci curvature bounds in non-smooth spaces) fails, and we will try to understand why. If time permits, I will also discuss how this can be generalised to some Carnot groups that have abnormal extremals. This is a joint work in progress with Luca Rizzi.

Thu, 07 Nov 2024
12:00
C6

Ant lane formation: particle system and mean-field limit PDE

Oscar De Wit
(University of Cambridge)
Abstract

We investigate an interacting particle model to simulate a foraging colony of ants, where each ant is represented as a so-called active Brownian particle. Interactions among ants are mediated through chemotaxis, aligning their orientations with the upward gradient of the pheromone field. We show how the empirical measure of the interacting particle system converges to a solution of a mean-field limit (MFL) PDE for some subset of the model parameters. We situate the MFL PDE as a non-gradient flow continuity equation with some other recent examples. We then demonstrate that the MFL PDE for the ant model has two distinctive behaviors: the well-known Keller--Segel aggregation into spots and the formation of lanes along which the ants travel. Using linear and nonlinear analysis and numerical methods we provide the foundations for understanding these particle behaviors at the mean-field level. We conclude with long-time estimates that imply that there is no infinite time blow-up for the MFL PDE.

Thu, 24 Oct 2024
12:00
C5

A splitting theorem for manifolds with a convex boundary component.

Alessandro Cucinotta
(University of Oxford)
Abstract

The celebrated Splitting Theorem by Cheeger-Gromoll states that a manifold with non-negative Ricci curvature which contains a line is isometric to a product, where one of the factors is the real line. A related result was later proved by Kasue. He showed that a manifold with non-negative Ricci curvature and two mean convex boundary components, one of which is compact, is also isometric to a product. In this talk, I will present a variant of Kasue’s result based on joint work with Andrea Mondino. We consider manifolds with non-negative Ricci curvature and disconnected mean convex boundary. We show that if one boundary component is parabolic and convex, then the manifold is a product, where one of the factors is an interval of the real line. The result is an application of recently developed tools in synthetic geometry and exploits the interplay between Ricci curvature and optimal transport.

Thu, 06 Jun 2024
12:00
L5

Volume above distance below

Raquel Perales
(CIMAT)
Abstract

Given a pair of metric tensors gj ≥ g0 on a Riemannian manifold, M, it is well known that Volj(M)≥Vol0(M). Furthermore, the volumes are equal if and only if the metric tensors are the same, gj=g0. Here we prove that if for a sequence gj, we have gj≥g0, Volj(M)→Vol0(M) and diam(Mj) ≤ D then (M,gj) converges to (M,g0) in the volume preserving intrinsic flat sense. The previous result will then be applied to prove stability of a class of tori.
 

This talk is based on joint works of myself with: Allen and Sormani (https://arxiv.org/abs/2003.01172), and Cabrera Pacheco and Ketterer (https://arxiv.org/abs/1902.03458).

Thu, 30 May 2024
12:00
L5

Description of highly symmetric RCD-spaces

Diego Corro
(Cardiff University)
Abstract
RCD-spaces arise naturally from optimal transport theory by the work of Otto-Villanni-Sturm. Moreover, these spaces have a very rich (local) analysis, and several properties of Riemannian manifolds hold for these spaces. But so far the global underlying topological structure of RCD-spaces is not fully understood. 
 
In this talk we consider RCD-spaces with a lot of symmetry, that is a large Lie group acting on it by measure preserving isometries, and fully describe the underlying topological structure. We prove this by taking ideas from optimal transport to construct a canonical space transverse to the orbit. Moreover, I also present a systematic method of constructing such RCD-spaces with high symmetry.
 
This is joint work with Jesús Núñez-Zimbrón and Jaime Santos-Rodríguez.
Thu, 23 May 2024
12:00
L5

Cancelled

Andrea Clini
(University of Oxford)
Abstract

Cancelled

Thu, 02 May 2024
12:00
L5

Gradient Flow Approach to Minimal Surfaces

Christopher Wright
(University of Oxford)
Abstract

Minimal surfaces, which are critical points of the area functional, have long been a source of fruitful problems in geometry. In this talk, I will introduce a new approach, primarily coming from a recent paper of M. Struwe, to constructing free boundary minimal discs using a gradient flow of a suitable energy functional. I will discuss the uniqueness of solutions to the gradient flow, including recent work on the uniqueness of weak solutions, and also what is known about the qualitative behaviour of the flow, especially regarding the interpretation of singularities which arise. Time permitting, I will also mention ongoing joint work with M. Rupflin and M. Struwe on extending this theory to general surfaces with boundary.

Thu, 07 Mar 2024
12:00
L6

Well-posedness of nonlocal aggregation-diffusion equations and systems with irregular kernels

Yurij Salmaniw
(Mathematical Institute, University of Oxford)
Abstract

Aggregation-diffusion equations and systems have garnered much attention in the last few decades. More recently, models featuring nonlocal interactions through spatial convolution have been applied to several areas, including the physical, chemical, and biological sciences. Typically, one can establish the well-posedness of such models via regularity assumptions on the kernels themselves; however, more effort is required for many scenarios of interest as the nonlocal kernel is often discontinuous.

 

In this talk, I will present recent progress in establishing a robust well-posedness theory for a class of nonlocal aggregation-diffusion models with minimal regularity requirements on the interaction kernel in any spatial dimension on either the whole space or the torus. Starting with the scalar equation, we first establish the existence of a global weak solution in a small mass regime for merely bounded kernels. Under some additional hypotheses, we show the existence of a global weak solution for any initial mass. In typical cases of interest, these solutions are unique and classical. I will then discuss the generalisation to the $n$-species system for the regimes of small mass and arbitrary mass. We will conclude with some consequences of these theorems for several models typically found in ecological applications.

 

This is joint work with Dr. Jakub Skrzeczkowski and Prof. Jose Carrillo.

Wed, 28 Feb 2024
12:00
L6

Non-regular spacetime geometry, curvature and analysis

Clemens Saemann
(Mathematical Institute, University of Oxford)
Abstract

I present an approach to Lorentzian geometry and General Relativity that does neither rely on smoothness nor
on manifolds, thereby leaving the framework of classical differential geometry. This opens up the possibility to study
curvature (bounds) for spacetimes of low regularity or even more general spaces. An analogous shift in perspective
proved extremely fruitful in the Riemannian case (Alexandrov- and CAT(k)-spaces). After introducing the basics of our
approach, we report on recent progress in developing a Sobolev calculus for time functions on such non-smooth
Lorentzian spaces. This seminar talk can also be viewed as a primer and advertisement for my mini course in
May: Current topics in Lorentzian geometric analysis: Non-regular spacetimes

Wed, 07 Feb 2024
12:00
L6

Pressure jump in the Cahn-Hilliard equation

Charles Elbar
(Laboratoire Jacques Louis Lions, Sorbonne Université)
Abstract

We model a tumor as an incompressible flow considering two antagonistic effects: repulsion of cells when the tumor grows (they push each other when they divide) and cell-cell adhesion which creates surface tension. To take into account these two effects, we use a 4th-order parabolic equation: the Cahn-Hilliard equation. The combination of these two effects creates a discontinuity at the boundary of the tumor that we call the pressure jump.  To compute this pressure jump, we include an external force and consider stationary radial solutions of the Cahn-Hilliard equation. We also characterize completely the stationary solutions in the incompressible case, prove the incompressible limit and prove convergence of the parabolic problems to stationary states.

Wed, 17 Jan 2024
12:00
L6

A new understanding of the grazing limit

Prof Tong Yang
(Department of Applied Mathematics, The Hong Kong Polytechnic University)
Abstract

The grazing limit of the Boltzmann equation to Landau equation is well-known and has been justified by using cutoff near the grazing angle with some suitable scaling. In this talk, we will present a new approach by applying a natural scaling on the Boltzmann equation. The proof is based on an improved well-posedness theory for the Boltzmann equation without angular cutoff in the regime with an optimal range of parameters so that the grazing limit can be justified directly that includes the Coulomb potential. With this new understanding, the scaled Boltzmann operator in fact can be decomposed into two parts. The first one converges to the Landau operator when the parameter of deviation angle tends to its singular value and the second one vanishes in the limit. Hence, the scaling and limiting process exactly capture the grazing collisions. The talk is based on a recent joint work with Yu-Long Zhou.

Thu, 30 Nov 2023

12:00 - 13:00
L3

Gravitational Landau Damping

Matthew Schrecker
(University of Bath)
Abstract

In the 1960s, Lynden-Bell, studying the dynamics of galaxies around steady states of the gravitational Vlasov-Poisson equation, described a phenomenon he called "violent relaxation," a convergence to equilibrium through phase mixing analogous in some respects to Landau damping in plasma physics. In this talk, I will discuss recent work on this gravitational Landau damping for the linearised Vlasov-Poisson equation and, in particular, the critical role of regularity of the steady states in distinguishing damping from oscillatory behaviour in the perturbations. This is based on joint work with Mahir Hadzic, Gerhard Rein, and Christopher Straub.

Thu, 23 Nov 2023

12:00 - 13:00
L3

Recent developments in fully nonlinear degenerate free boundary problems

Edgard Pimentel
(University of Coimbra)
Abstract

We consider degenerate fully nonlinear equations, whose degeneracy rate depends on the gradient of solutions. We work under a Dini-continuity condition on the degeneracy term and prove that solutions are continuously differentiable. Then we frame this class of equations in the context of a free transmission problem. Here, we discuss the existence of solutions and establish a result on interior regularity. We conclude the talk by discussing a boundary regularity estimate; of particular interest is the case of point-wise regularity at the intersection of the fixed and the free boundaries. This is based on joint work with David Stolnicki.

Thu, 02 Nov 2023

12:00 - 13:00
L3

Coarsening of thin films with weak condensation

Hangjie Ji
(North Carolina State University)
Abstract

A lubrication model can be used to describe the dynamics of a weakly volatile viscous fluid layer on a hydrophobic substrate. Thin layers of the fluid are unstable to perturbations and break up into slowly evolving interacting droplets. In this talk, we will present a reduced-order dynamical system derived from the lubrication model based on the nearest-neighbour droplet interactions in the weak condensation limit. Dynamics for periodic arrays of identical drops and pairwise droplet interactions are investigated which provide insights to the coarsening dynamics of a large droplet system. Weak condensation is shown to be a singular perturbation, fundamentally changing the long-time coarsening dynamics for the droplets and the overall mass of the fluid in two additional regimes of long-time dynamics. This is joint work with Thomas Witelski.

Thu, 19 Oct 2023

12:00 - 13:00
L3

Extrinsic flows on convex hypersurfaces of graph type.

Hyunsuk Kang
(Gwangju Institute of Science and Technology and University of Oxford)
Abstract

Extrinsic flows are evolution equations whose speeds are determined by the extrinsic curvature of submanifolds in ambient spaces.  Some of the well-known ones are mean curvature flow, Gauss curvature flow, and Lagrangian mean curvature flow.

We focus on the special case in which the speed of a flow is given by powers of mean curvature for smooth convex hypersurfaces of graph type, i.e., ones that can be represented as the graph of a function.  Convergence and long-time existence of such flow will be discussed. Furthermore, C^2 estimates which are independent of height of the graph will be derived to see that the boundary of the domain of the graph is also a smooth solution for the same flow as a submanifold with codimension two in the classical sense.  Some of the main ideas, notably a priori estimates via the maximum principle, come from the work of Huisken and Ecker on mean curvature evolution of entire graphs in 1989.  This is a joint work with Ki-ahm Lee and Taehun Lee.

Thu, 09 Mar 2023

12:00 - 13:00
L4

TBA

Vincent Calvez
(Institut Camille Jordan, Université Claude Bernard)
Abstract

TBA

Thu, 23 Feb 2023

13:00 - 14:00
L4

Failure of the CD condition in sub-Riemannian and sub-Finsler geometry

Mattia Magnabosco
(Hausdorff Center for Mathematics)
Abstract

The Lott-Sturm-Villani curvature-dimension condition CD(K,N) provides a synthetic notion for a metric measure space to have curvature bounded from below by K and dimension bounded from above by N. It was proved by Juillet that the CD(K,N) condition is not satisfied in a large class of sub-Riemannian manifolds, for every choice of the parameters K and N. In a joint work with Tommaso Rossi, we extended this result to the setting of almost-Riemannian manifolds and finally it was proved in full generality by Rizzi and Stefani. In this talk I present the ideas behind the different strategies, discussing in particular their possible adaptation to the sub-Finsler setting. Lastly I show how studying the validity of the CD condition in sub-Finsler Carnot groups could help in proving rectifiability of CD spaces.

Thu, 23 Feb 2023

12:00 - 13:00
L4

Ocean Modelling at the Met Office

Mike Bell
(Met Office Fellow in Ocean Dynamics)
Abstract

Mike will briefly describe the scope and shape of science within the Met Office and of his career there. He will also outline the coordination of the development of the NEMO ocean model, which he leads, and work to ensure the marine systems at the Met Office work efficiently on modern High Performance Computers (HPCs).  In the second half of the talk, Mike will focus on two of his current scientific interests: accurate calculation of horizontal pressure forces in models with steeply sloping coordinates; and dynamical interpretations of meridional overturning circulations and ocean heat uptake.

Thu, 19 Jan 2023

12:00 - 13:00
L6

On the Incompressible Limit for a Tumour Growth Model Incorporating Convective Effects

Markus Schmidtchen
(TU Dresden)
Abstract

In this seminar, we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporated the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion. The main result of this work is the incompressible limit of this model, which builds a bridge between the density-based model and a geometry free-boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.

Thu, 09 Jun 2022

11:30 - 15:00
Linbury Building, Worcester College, University of Oxford

Research Working Lunch TT22

Further Information

Details including speakers, tiles and abstracts coming soon ...

Registration is required, please CLICK HERE or scan the below QR code.

QR Code for Research Working Lunch TT22

Organisers: 

Dr Benjamin Fehrman

Eliana Fausti

 

Administrator:

Kerri Louise Howard FInstAM

Abstract

CDT PDE Research Working Lunch Poster

11:30 Refreshments (tea, coffee and homemade biscuits)

12:00 Talks (main room)

13:15 Buffet Style Lunch (incl. tea, coffee and homemade cakes)

15:00 End

Fri, 20 Jun 2014

12:00 - 13:00
L6

Deformations of Axially Symmetric Initial Data and the Angular Momentum-Mass Inequality

Dr. Ye Sle Cha
(State University of New York at Stony Brook)
Abstract

We show how to reduce the general formulation of the mass-angular momentum inequality, for axisymmetric initial data of the Einstein equations, to the known maximal case whenever a geometrically motivated system of equations admits a solution. This procedure is based on a certain deformation of the initial data which preserves the relevant geometry, while achieving the maximal condition and its implied inequality (in a weak sense) for the scalar curvature; this answers a question posed by R. Schoen. The primary equation involved, bears a strong resemblance to the Jang-type equations studied in the context of the positive mass theorem and the Penrose inequality. Each equation in the system is analyzed in detail individually, and it is shown that appropriate existence/uniqueness results hold with the solution satisfying desired asymptotics. Lastly, it is shown that the same reduction argument applies to the basic inequality yielding a lower bound for the area of black holes in terms of mass and angular momentum.

Mon, 16 Jun 2014

14:00 - 15:00
L4

Weighted norms and decay properties for solutions of the Boltzmann equation

Prof. Irene M. Gamba
(University of Texas at Austin)
Abstract

We will discuss recent results regarding generation and propagation of summability of moments to solution of the Boltzmann equation for variable hard potentials.
These estimates are in direct connection to the understanding of high energy tails and decay rates to equilibrium.

Fri, 13 Jun 2014

12:00 - 13:00
L6

Shock Reflection, von Neumann conjectures, and free boundary problems

Prof. Mikhail Feldman
(University of Wisconsin-Madison)
Abstract

We discuss shock reflection problem for compressible gas dynamics, various patterns of reflected shocks, and von Neumann conjectures on transition between regular and Mach reflections. Then

we will talk about recent results on existence of regular reflection solutions for potential flow equation up to the detachment angle, and discuss some techniques. The approach is to reduce the shock

reflection problem to a free boundary problem for a nonlinear equation of mixed elliptic-hyperbolic type. Open problems will also be discussed. The talk is based on the joint work with Gui-Qiang Chen.

Fri, 13 Jun 2014

10:30 - 11:30
L6

Fluid-Composite Structure Interaction Problems

Prof. Suncica Canic
(University of Houston)
Abstract

Fluid-structure interaction (FSI) problems arise in many applications. The widely known examples are aeroelasticity and biofluids.

In biofluidic applications, such as, e.g., the study of interaction between blood flow and cardiovascular tissue, the coupling between the fluid and the

relatively light structure is {highly nonlinear} because the density of the structure and the density of the fluid are roughly the same.

In such problems, the geometric nonlinearities of the fluid-structure interface

and the significant exchange in the energy between a moving fluid and a structure

require sophisticated ideas for the study of their solutions.

In the blood flow application, the problems are further exacerbated by the fact that the walls of major arteries are composed of several layers, each with

different mechanical characteristics.

No results exist so far that analyze solutions to fluid-structure interaction problems in which the structure is composed of several different layers.

In this talk we make a first step in this direction by presenting a program to study the {\bf existence and numerical simulation} of solutions

for a class of problems

describing the interaction between a multi-layered, composite structure, and the flow of an incompressible, viscous fluid,

giving rise to a fully coupled, {\bf nonlinear moving boundary, fluid-multi-structure interaction problem.}

A stable, modular, loosely coupled scheme will be presented, and an existence proof

showing the convergence of the numerical scheme to a weak solution to the fully nonlinear FSI problem will be discussed.

Our results reveal a new physical regularizing mechanism in

FSI problems: the inertia of the fluid-structure interface regularizes the evolution of the FSI solution.

All theoretical results will be illustrated with numerical examples.

This is a joint work with Boris Muha (University of Zagreb, Croatia, and with Martina Bukac, University of Pittsburgh and Notre Dame University).

Thu, 05 Jun 2014

12:00 - 13:00
L6

A nonlinear model for nematic elastomers

Dr. Marco Barchiesi
(Universita di napoli)
Abstract

I will discuss the well-posedness of a new nonlinear model for nematic

elastomers. The main novelty is that the Frank energy penalizes

spatial variations of the nematic director in the deformed, rather

than in the reference configuration, as it is natural in the case of

large deformations.

Fri, 30 May 2014

12:00 - 13:00
L6

Weak universality of the stochastic Allen-Cahn equation

Dr. Weijun Xu
(University of Warwick)
Abstract

We consider a large class of three dimensional continuous dynamic fluctuation models, and show that they all rescale and converge to the stochastic Allen-Cahn equation, whose solution should be interpreted after a suitable renormalization procedure. The interesting feature is that, the coefficient of the limiting equation is different from one's naive guess, and the renormalization required to get the correct limit is also different from what one would naturally expect. I will also briefly explain how the recent theory of regularity structures enables one to prove such results. Joint work with Martin Hairer.

Fri, 23 May 2014

12:00 - 13:00
C6

Analysis of variational model for nematic shells

Dr. Antonio Segatti
Abstract

In this talk, I will introduce and analyse an elastic

surface energy recently introduced by G. Napoli and

L. Vergori to model thin films of nematic liquid crystals.

As it will be clear, the topology and the geometry of

the surface will play a fundamental role in understanding

the behavior of thin films of liquid crystals.

In particular, our results regards the existence of

minimizers, the existence of the gradient flow

of the energy and, in the case of an axisymmetric

toroidal particle, a detailed characterization of global and local minimizers.

This last item is supplemented with numerical experiments.

This is a joint work with M. Snarski (Brown) and M. Veneroni (Pavia).

Fri, 09 May 2014

12:00 - 13:00
L6

On Local Existence of Shallow Water Equations with Vacuum

Prof. Yachun Li
(Shanghai JiaoTong University)
Abstract

In this talk, I will present our new local existence result to the shallow water equations describing the motions of vertically averaged flows, which are closely related to the $2$-D isentropic Navier-Stokes equations for compressible fluids with density-dependent viscosity coefficients. Via introducing the notion of regular solutions, the local existence of classical solutions is established for the case that the viscosity coefficients are degenerate and the initial data are arbitrarily large with vacuum appearing in the far field.

Fri, 09 May 2014

11:00 - 12:00
L6

Study of the Prandtl boundary layer theory

Prof. Ya-Guang Wang
(Shanghai JiaoTong University)
Abstract

We shall talk our recent works on the well-posedness of the Prandtl boundary layer equations both in two and three space variables. For the two-dimensional problem, we obtain the well-posedness in the Sobolev spaces by using an energy method under the monotonicity assumption of tangential velocity, and for the three-dimensional Prandtl equations, we construct a special solution by using the Corocco transformation, and obtain it is linearly stable with respect to any three-dimensional perturbation. These works are collaborated with R. Alexandre, C. J. Liu, C. Xu and T. Yang.

Fri, 02 May 2014

12:00 - 13:00
C6

Using multiple frequencies to satisfy local constraints in PDE and applications to hybrid inverse problems

Giovanni Alberti
(University of Oxford)
Abstract

In this talk I will describe a multiple frequency approach to the boundary control of Helmholtz and Maxwell equations. We give boundary conditions and a finite number of frequencies such that the corresponding solutions satisfy certain non-zero constraints inside the domain. The suitable boundary conditions and frequencies are explicitly constructed and do not depend on the coefficients, in contrast to the illuminations given as traces of complex geometric optics solutions. This theory finds applications in several hybrid imaging modalities. Some examples will be discussed.

Thu, 13 Mar 2014

12:00 - 13:00
L6

Stochastic homogenization of nonconvex integral functionals with non-standard convex growth conditions

Prof. Antoine Gloria
(Université Libre de Bruxelles and Inria)
Abstract

One of the main unsolved problems in the field of homogenization of multiple integrals concerns integrands which are not bounded polynomially from above. This is typically the case when incompressible (or quasi-incompressible) materials are considered, although this is still currently a major open problem.
In this talk I will present recent progress on the stochastic homogenization of nonconvex integral functionals in view of the derivation of nonlinear elasticity from polymer physics, and consider integrands which satisfy very mild convex growth conditions from above.
I will first treat convex integrands and prove homogenization by combining approximation arguments in physical space with the Fenchel duality theory in probability. In a second part I will generalize this homogenization result to the case of nonconvex integrands which can be written in the form of a convex part (with mild growth condition from above) and a nonconvex part (that satisfies a standard polynomial growth condition). This decomposition is particularly relevant for the derivation of nonlinear elasticity from polymer physics.
This is joint work with Mitia Duerinckx (ULB).
Thu, 27 Feb 2014

12:00 - 13:00
L6

The rigidity problem for symmetrization inequalities

Dr. Filippo Cagnetti
(University of Sussex)
Abstract

Steiner symmetrization is a very useful tool in the study of isoperimetric inequality. This is also due to the fact that the perimeter of a set is less or equal than the perimeter of its Steiner symmetral. In the same way, in the Gaussian setting,

it is well known that Ehrhard symmetrization does not increase the Gaussian perimeter. We will show characterization results for equality cases in both Steiner and Ehrhard perimeter inequalities. We will also characterize rigidity of equality cases. By rigidity, we mean the situation when all equality cases are trivially obtained by a translation of the Steiner symmetral (or, in the Gaussian setting, by a reflection of the Ehrhard symmetral). We will achieve this through the introduction of a suitable measure-theoretic notion of connectedness, and through a fine analysis of the barycenter function

for a special class of sets. These results are obtained in collaboration with Maria Colombo, Guido De Philippis, and Francesco Maggi.

Thu, 20 Feb 2014

13:00 - 14:00
L6

On extremizers for Fourier restriction inequalities

Diogo Oliveira e Silva
(Universitat Bonn)
Abstract

This talk will focus on extremizers for

a family of Fourier restriction inequalities on planar curves. It turns

out that, depending on whether or not a certain geometric condition

related to the curvature is satisfied, extremizing sequences of

nonnegative functions may or may not have a subsequence which converges

to an extremizer. We hope to describe the method of proof, which is of

concentration compactness flavor, in some detail. Tools include bilinear

estimates, a variational calculation, a modification of the usual

method of stationary phase and several explicit computations.

Thu, 13 Feb 2014

12:00 - 13:00
L6

Modelling collective motion in biology

Prof. Philip Maini
(University of Oxford)
Abstract

We will present three different recent applications of cell motion in biology: (i) Movement of epithelial sheets and rosette formation, (ii) neural crest cell migrations, (iii) acid-mediated cancer cell invasion. While the talk will focus primarily on the biological application, it will be shown that all of these processes can be represented by reaction-diffusion equations with nonlinear diffusion term.

Fri, 07 Feb 2014

12:00 - 13:00
L6

Transonic shocks in steady compressible Euler flows

Prof. Hairong Yuan
(East China Normal University)
Abstract

I will introduce the physical phenomena of transonic shocks, and review the progresses on related boundary value problems of the steady compressible Euler equations. Some Ideas/methods involved in the studies will be presented through specific examples. The talk is based upon joint works with my collaborators.

Thu, 23 Jan 2014

12:00 - 13:00
L6

On Stability of Steady Transonic Shocks in Supersonic Flow around a Wedge

Prof. Beixiang Fang
(Shanghai JiaoTong University)
Abstract

In this talk we are concerned with the stability of steady transonic shocks in supersonic flow around a wedge. 2-D and M-D potential stability will be presented.

This talk is based on the joint works with Prof. G.-Q. Chen, and Prof. S.X. Chen.