Forthcoming events in this series


Mon, 13 Nov 2023

16:30 - 17:30
L3

MRA Filters

Hrvoje Šikić
(University of Zagreb)
Abstract

I will present some results from the newly developed theory of wavelets; based on the joint work with the following authors:

P.M. Luthy, H.Šikić, F.Soria, G.L.Weiss, E.N.Wilson.One-DimensionalDyadic Wavelets.Mem. Amer. Math. Soc. 280 (2022), no 1378, ix+152 pp.

About two and a half decades ago and based on the influential book by Fernandez and Weiss, an approach was developed to study wavelets from the point of view of their connections with Fourier analysis. The idea was to study wavelets and other reproducing function systems via the four basic equations that characterized various properties of wavelet systems, like frame and basis properties, completeness, orthogonality, etc. Despite hundreds of research papers and the impressive development of the theory of such systems, some questions remain open even in the basic case of dyadic wavelets on the real line. Among the most thorough treatments that we provide in this lengthy paper is the issue of the understanding of the low-pass filters associated with the MRA structure. In this talk, I will focus on some of these results. As it turned out, a more general and abstract approach to the problem, using the study of dyadic orbits and the newly introduced Tauberian function, reveals several interesting properties and opens an interesting context for some older results

Mon, 06 Nov 2023

16:30 - 17:30
L3

On Hookean models of dilute polymeric fluids.

Tomasz Dębiec
(University of Warsaw)
Abstract

We consider the Hookean dumbbell model, a system of nonlinear PDEs arising in the kinetic theory of homogeneous dilute polymeric fluids. It consists of the unsteady incompressible Navier-Stokes equations in a bounded Lipschitz domain, coupled to a Fokker-Planck-type parabolic equation with a centre-of-mass diffusion term, for the probability density function, modelling the evolution of the configuration of noninteracting polymer molecules in the solvent.

The micro-macro interaction is reflected by the presence of a drag term in the Fokker-Planck equation and the divergence of a polymeric extra-stress tensor in the Navier-Stokes balance of momentum equation. In a simplified case where the drag term is corotational, we prove global existence of weak solutions and discuss some of their properties: we use the relative energy method to deduce a weak-strong uniqueness type result, and derive the macroscopic closure of the kinetic model: a corotational Oldroyd-B model with stress-diffusion.

In the general noncorotational case, we consider “generalised dissipative solutions” — a relaxation of the usual notion of weak solution, allowing for the presence of a, possibly nonzero, defect measure in the momentum equation, which accounts for the lack of compactness in the polymeric extra-stress tensor. Joint work with Endre Suli (Oxford).

Mon, 30 Oct 2023

16:30 - 17:30
L3

Elasto-plasticity driven by dislocation movement

Filip Rindler
(University of Warwick)
Abstract

This talk presents some recent progress for models coupling large-strain, geometrically nonlinear elasto-plasticity with the movement of dislocations. In particular, a new geometric language is introduced that yields a natural mathematical framework for dislocation evolutions. In this approach, the fundamental notion is that of 2-dimensional "slip trajectories" in space-time (realized as integral 2-currents), and the dislocations at a given time are recovered via slicing. This modelling approach allows one to prove the existence of solutions to an evolutionary system describing a crystal undergoing large-strain elasto-plastic deformations, where the plastic part of the deformation is driven directly by the movement of dislocations. This is joint work with T. Hudson (Warwick).

Mon, 23 Oct 2023

16:30 - 17:30
L3

Graph Limit for Interacting Particle Systems on Weighted Random Graphs

Nastassia Pouradier Duteil
(Sorbonne Université)
Abstract

We study the large-population limit of interacting particle systems posed on weighted random graphs. In that aim, we introduce a general framework for the construction of weighted random graphs, generalizing the concept of graphons. We prove that as the number of particles tends to infinity, the finite-dimensional particle system converges in probability to the solution of a deterministic graph-limit equation, in which the graphon prescribing the interaction is given by the first moment of the weighted random graph law. We also study interacting particle systems posed on switching weighted random graphs, which are obtained by resetting the weighted random graph at regular time intervals. We show that these systems converge to the same graph-limit equation, in which the interaction is prescribed by a constant-in-time graphon.

Mon, 16 Oct 2023

16:30 - 17:30
L3

Plateau's problem via the theory of phase transitions

Stephen Lynch
(Imperial College London )
Abstract

Plateau's problem asks whether every boundary curve in 3-space is spanned by an area minimizing surface. Various interpretations of this problem have been solved using eg. geometric measure theory. Froehlich and Struwe proposed a PDE approach, in which the desired surface is produced using smooth sections of a twisted line bundle over the complement of the boundary curve. The idea is to consider sections of this bundle which minimize an analogue of the Allen--Cahn functional (a classical model for phase transition phenomena) and show that these concentrate energy on a solution of Plateau's problem. After some background on the link between phase transition models and minimal surfaces, I will describe new work with Marco Guaraco in which we produce smooth solutions of Plateau's problem using this approach. 

Mon, 09 Oct 2023

16:30 - 17:30
L5

Exponential mixing by random velocity fields

Rishabh Gvalani
(Max Planck Institute in Leipzig)
Abstract

We establish exponentially-fast mixing for passive scalars driven by two well-known examples of random divergence-free vector fields. The first one is the alternating shear flow model proposed by Pierrehumbert, in which case we set up a dynamics-based framework to construct such space-time smooth universal exponential mixers. The second example is the statistically stationary, homogeneous, isotropic Kraichnan model of fluid turbulence. In this case, the proof follows a new explicit identity for the evolution of negative Sobolev norms of the scalar. This is based on joint works with Alex Blumenthal (Georgia Tech) and Michele Coti Zelati (ICL), and Michele Coti Zelati and Theodore Drivas (Stony Brook), respectively.

Wed, 13 Sep 2023

14:00 - 15:00
C6

Nonlinear SPDE approximation of the Dean-Kawasaki equation

Professor Ana Djurdjevac
(Free University Berlin)
Abstract

Interacting particle systems provide flexible and powerful models that are useful in many application areas such as sociology (agents), molecular dynamics (proteins) etc. However, particle systems with large numbers of particles are very complex and difficult to handle, both analytically and computationally. Therefore, a common strategy is to derive effective equations that describe the time evolution of the empirical particle density, the so-called Dean-Kawasaki equation.

 

Our aim is to derive and study continuum models for the mesoscopic behavior of particle systems. In particular, we are interested in finite size effects. We will introduce nonlinear and non-Gaussian models that approximate the Dean-Kawasaki equation, in the special case of non-interacting particles. We want to study the well-posedness of these nonlinear SPDE models and to control the weak error of the SPDE approximation.  This is the joint work with H. Kremp (TU Wien) and N. Perkowski (FU Berlin).

Tue, 04 Jul 2023

17:00 - 18:00
N3:12

Fractional Sobolev lsometric lmmersions of Planar Domains

Siran Li
(NYU Shanghai)
Abstract

We discuss $C^1$-regularity and developability of isometric immersions of flat domains into $\mathbb{R}^3$ enjoying a local fractional Sobolev $W^{1+s;2/s}$-regularity for $2/3 \leq s < 1$, generalising the known results on Sobolev (by Pakzad) and H\"{o}lder (by De Lellis--Pakzad) regimes. Ingredients of the proof include analysis of the weak Codazzi equations of isometric immersions, the study of $W^{1+s;2/s}$-gradient deformations with symmetric derivative and vanishing distributional Jacobian determinant, and the theory of compensated compactness. Joint work with M. Reza Pakzad and Armin Schikorra.

Wed, 28 Jun 2023

16:00 - 17:00
L6

Schauder estimates at nearly linear growth

Giuseppe Rosario Mingione
(University of Parma)
Abstract

Schauder estimates are a classical tool in linear and nonlinear elliptic and parabolic PDEs. They describe how regularity of coefficients reflects in regularity of solutions. They basically have a perturbative nature. This means that they can be obtained by perturbing the estimates available for problems without coefficients. This paradigm works as long as one deals with uniformly elliptic equations. The nonuniformly elliptic case is a different story and Schauder's theory turns out to be not perturbative any longer, as shown by counterexamples. In my talk, I will present a method allowing to bypass the perburbative schemes and leading to Schauder estimates in the nonuniformly elliptic regime. For this I will concentrate on the case of nonuniformly elliptic functionals with nearly linear growth, also covering a borderline case of so-called double phase energies. From recent, joint work with Cristiana De Filippis (Parma). 

Mon, 12 Jun 2023

16:30 - 17:30
L4

Breaking glass optimally and Minkowski's problem for polytopes

Jian-Guo Liu
(Duke University)
Abstract
Motivated by a study of least-action incompressible flows, we study all the ways that a given convex body in Euclidean space can break into countably many pieces that move away from each other rigidly at constant velocity, following geodesic motions in the sense of optimal transport theory. These we classify in terms of a countable version of Minkowski's geometric problem of determining convex polytopes by their face areas and normals. Illustrations involve various intriguing examples both fractal and paradoxical, including Apollonian packings and other types of full packings by smooth balls.
Mon, 05 Jun 2023
16:30
L4

KPP traveling waves in the half-space

Cole Graham
(Brown University)
Abstract

Reaction–diffusion equations are widely used to model spatial propagation, and constant-speed "traveling waves" play a central role in their dynamics. These waves are well understood in "essentially 1D" domains like cylinders, but much less is known about waves with noncompact transverse structure. In this direction, we will consider traveling waves of the KPP reaction–diffusion equation in the Dirichlet half-space. We will see that minimal-speed waves are unique (unlike faster waves) and exhibit curious asymptotics. The arguments rest on potential theory, the maximum principle, and a powerful connection with the probabilistic system known as branching Brownian motion.

This is joint work with Julien Berestycki, Yujin H. Kim, and Bastien Mallein.

Mon, 29 May 2023

16:30 - 17:30
L4

In Search of Euler Equilibria Via the MR Equations

Susan Friedlander
(University of Southern California)
Abstract

The subject of “geometric” fluid dynamics flourished following the seminal work of VI.
Arnold in the 1960s. A famous paper was published in 1970 by David Ebin and Jerrold
Marsden, who used the manifold structure of certain groups of diffeomorphisms to obtain
sharp existence and uniqueness results for the classical equations of fluid dynamics. Of
particular importance are the fixed points of the underlying dynamical system and the
“accessibility” of these Euler equilibria. In 1985 Keith Moffatt introduced a mechanism
for reaching these equilibria not through the Euler vortex dynamics itself but via a
topology-preserving diffusion process called “Magnetic Relaxation”. In this talk, we will
discuss some recent results for Moffatt’s MR equations which are mathematically
challenging not only because they are active vector equations but also because they have
a cubic nonlinearity.


This is joint work with Rajendra Beckie, Adam Larios, and Vlad Vicol.

 

Mon, 22 May 2023

17:30 - 18:30
L6

Scaling Optimal Transport for High dimensional Learning

Gabriel Peyre
(École Normale Supérieure )
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport".

Mon, 22 May 2023
16:30
L6

Optimal mass transport and sharp Sobolev inequalities

Zoltan Balogh
(Universitat Bern)
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal mass transport is a versatile tool that can be used to prove various geometric and functional inequalities. In this talk we focus on the class of Sobolev inequalities.

In the first part of the talk I present the main idea of this method, based on the work of Cordero-Erausquin, Nazaret and Villani (2004).

The second part of the talk is devoted to the joint work with Ch. Gutierrez and A. Kristály about Sobolev inequalities with weights. 

Mon, 15 May 2023
16:30
L4

Lord Rayleigh’s conjecture for clamped plates in curved spaces

Alexandru Kristaly
(Óbuda University)
Abstract

The talk is focused on the clamped plate problem, initially formulated by Lord Rayleigh in 1877, and solved by M. Ashbaugh & R. Benguria (Duke Math. J., 1995) and N. Nadirashvili (Arch. Ration. Mech. Anal., 1995) in 2 and 3 dimensional euclidean spaces. We consider the same problem on both negatively and positively curved spaces, and provide various answers depending on the curvature, dimension and the width/size of the clamped plate.

Mon, 08 May 2023

16:30 - 17:30
L4

Quasiconvexity and nonlinear Elasticity

Andre Guerra
(Institute for Theoretical Studies at ETH Zürich)
Abstract

Quasiconvexity is the fundamental existence condition for variational problems, yet it is poorly understood. Two outstanding problems remain: 

  • 1) does rank-one convexity, a simple necessary condition, imply quasiconvexity in two dimensions? 
  • 2) can one prove existence theorems for quasiconvex energies in the context of nonlinear Elasticity? 

In this talk we show that both problems have a positive answer in a special class of isotropic energies. Our proof combines complex analysis with the theory of gradient Young measures. On the way to the main result, we establish quasiconvexity inequalities for the Burkholder function which yield, in particular, many sharp higher integrability results. 
The talk is based on joint work with Kari Astala, Daniel Faraco, Aleksis Koski and Jan Kristensen.

Mon, 01 May 2023
17:30
L4

Convexity and Uniqueness in the Calculus of Variations

Bernd Kirchheim
(Universität Leipzig)
Further Information

Please note there are two pde seminars on Monday of W2 (May 1st).

Abstract
Whereas general existence results for minimizers of (vectorial) variational problems are clearly related to (coercivity) and Morreys quasiconvexity, the situation becomes much more constrained if also uniqueness of the minimizers is required for all linear pertubation of the energy. In this case a rather natural notion of functional convexity arises in a general Banach space context. We will discuss what are the specific implications for energy densities of integral cost functions.
Mon, 01 May 2023
16:30
L4

On the stability of multi-dimensional rarefaction waves

Pin Yu
(Tsinghua University)
Further Information

Please note there are two pde seminars on Monday of W2 (May 1st).

Abstract

In his pioneering work in 1860, Riemann proposed the Riemann problem and solved it for isentropic gas in terms of shocks and rarefaction waves. It eventually became the foundation of the theory of one-dimension conservation laws developed in the 20th century. We prove the non-nonlinear structural stability of the Riemann problem for multi-dimensional isentropic Euler equations in the regime of rarefaction waves. This is a joint work with Tian-Wen Luo.

Mon, 06 Mar 2023
16:30
L4

Global stability of Kaluza-Klein spacetimes

Zoe Wyatt
(King's College London)
Abstract

Spacetimes formed from the cartesian product of Minkowski space and a flat torus play an important role as toy models for theories of supergravity and string theory. In this talk I will discuss an upcoming work with Huneau and Stingo showing the nonlinear stability of such a Kaluza-Klein spacetime. The result is also connected to a claim of Witten.

Mon, 27 Feb 2023
16:30
L4

Optimality problems in function spaces

Luboš Pick
(Charles University)
Abstract

In mathematical modelling, data and solutions are often represented as measurable functions, and their quality is being captured by their membership to a certain function space. One of the core questions arising in applications of this approach is the comparison of the quality of the data and that of the solution. A particular attention is being paid to optimality of the results obtained. A delicate choice of scales of suitable function spaces is required in order to balance the expressivity (the ability to capture fine mathematical properties of the model) and the accessibility (the level of its technical difficulty) for a practical use. We will give an overview of the research area which grew out of these questions and survey recent results obtained in this direction as well as challenging open questions. We will describe a development of a powerful method based on the so-called reduction principles and demonstrate its use on specific problems including the continuity of Sobolev embeddings or boundedness of pivotal integral operators such as the Hardy - Littlewood maximal operator and the Laplace transform.

Mon, 20 Feb 2023
16:30
L4

Alexandrov immersed mean curvature flow

Benjamin Lambert
(Leeds)
Abstract
Mean curvature flow deforms immersed surfaces by the negative gradient flow of the area functional. In this talk I will introduce Alexandrov immersed mean curvature flow, and extend Andrew's non-collapsing estimate to include Alexandrov immersed surfaces. This implies a gradient estimate for the flow, and allows Brendle and Huisken's mean curvature flow with surgery to be extended beyond flows of embedded surfaces to the Alexandrov immersed case. This is joint work with Elena Maeder-Baumdicker.
Mon, 13 Feb 2023
16:30
L4

***CANCELLED*** Homogenization and multi-phase systems

Didier Bresch
(CNRS, Universite Savoie Mont-Blanc)
Abstract

***CANCELLED*** In this talk, I will discuss recent results related to the mathematical justification of PDEs which model multi-phase flows at the macroscopic level from mesoscopic descriptions with jump conditions at interfaces. We will also present interesting and difficult open problems.

Mon, 06 Feb 2023
16:30
L4

Singularities along the Lagrangian mean curvature flow of surfaces

Felix Schulze
(Warwick)
Abstract
It is an open question to determine which Hamiltonian isotopy classes of Lagrangians in a Calabi-Yau manifold have a special Lagrangian representative. One approach is to follow the steepest descent of area, i.e. the mean curvature flow, which preserves the Lagrangian condition. But in general such a flow will develop singularities in finite time, and it has been open how to continue the flow past singularities. We will give an introduction to the problem and explain recent advances where we show that in the simplest possible situation, i.e. the Lagrangian mean curvature flow of surfaces, when the singularity is the special Lagrangian union of two transverse planes, then the flow forms a “neck pinch”, and can be continued past the singularity. This is joint work with Jason Lotay and Gábor Székelyhidi.
Mon, 30 Jan 2023
16:30
L4

Improved bounds for the fundamental solution of the heat equation in exterior domains

Jose A. Cañizo
(Granada)
Abstract

We use entropy methods to show that the heat equation with Dirichlet boundary conditions on the complement of a compact set in R^d shows a self-similar behaviour much like the usual heat equation on R^d, once we account for the loss of mass due to the boundary. Giving good lower bounds for the fundamental solution on these sets is surprisingly a relatively recent result, and we find some improvements using some advances in logarithmic Sobolev inequalities. In particular, we are able to give optimal asymptotic bounds for large times for the fundamental solution with an explicit approach rate in dimensions larger than 2, and some new bounds in dimension 2.

This is a work in collaboration with Alejandro Gárriz and Fernando Quirós.

Mon, 23 Jan 2023
16:30
L4

Analysis of multi-phase PDE models: from fluids to crowds

Ewelina Zatorska
(Imperial College)
Abstract

This talk will be devoted to our recent developments in the analysis of emerging models for complex flows. I will start from presenting a general PDE system describing two-fluid flows, for which we prove existence of global in time weak solutions for arbitrary large initial data. I will explain where the famous approach of Lions developed for the compressible Navier-Stokes equations fails and how to use a more direct, weighted Kolmogorov criterion to prove compactness of approximating sequences of solutions. Through a formal limit, I will link the two-fluid model to the constrained two-phase models. Applications of such models include modelling of granular flows, crowd motion, or shallow water flow through a channel. The last part of my talk will focus on the rigorous derivation of these models from the compressible Navier-Stokes equations via the vanishing singular pressure or viscosity limit.

Mon, 16 Jan 2023
16:30
L5

Financial illiquidity, Lévy processes and HJB equations

Stefano Marchesani
(Rome La Sapienza)
Abstract

I will present a model for an optimal portfolio allocation and consumption problem for a portfolio composed of a risk-free bond and two illiquid assets. Two forms of illiquidity are presented, both illiquidities based on Lévy processes. The goal of the investor is to maximise a certain utility function, and the optimal utility is found as a solution of a nonlinear PIDE of the Hamilton-Jacobi-Bellman kind.

Mon, 28 Nov 2022
16:30
L5

Obstruction-free gluing for the Einstein equations

Stefan Czimek
(Leipzig)
Abstract

We present a new approach to the gluing problem in General Relativity, that is, the problem of matching two solutions of the Einstein equations along a spacelike or characteristic (null) hypersurface. In contrast to previous constructions, the new perspective actively utilizes the nonlinearity of the constraint equations. As a result, we are able to remove the 10-dimensional spaces of obstructions to gluing present in the literature. As application, we show that any asymptotically flat spacelike initial data set can be glued to Schwarzschild initial data of sufficiently large mass. This is joint work with I. Rodnianski.

Mon, 21 Nov 2022
16:30
L5

Hyperbolic Cauchy problems with multiplicities

Claudia Garetto
(Queen Mary)
Abstract

In this talk I will discuss well-posedness of hyperbolic Cauchy problems with multiplicities and the role played by the lower order terms (Levi conditions). I will present results obtained in collaboration with Christian Jäh (Göttingen) and Michael Ruzhansky (QMUL/Ghent) on higher order equations and non-diagonalisable systems.

Mon, 07 Nov 2022
16:30
L5

Schauder estimates for any taste

Cristiana De Filippis
(Università di Parma)
Abstract

So-called Schauder estimates are a standard tool in the analysis of linear elliptic and parabolic PDE. They have been originally obtained by Hopf (1929, interior case), and by Schauder and Caccioppoli (1934, global estimates). The nonlinear case is a more recent achievement from the ’80s (Giaquinta & Giusti, Ivert, Lieberman, Manfredi). All these classical results hold in the uniformly elliptic framework. I will present the solution to the longstanding problem, open since the ‘70s, of proving estimates of such kind in the nonuniformly elliptic setting. I will also cover the case of nondifferentiable functionals and provide a complete regularity theory for a new double phase model. From joint work with Giuseppe Mingione (University of Parma).

Mon, 17 Oct 2022
16:30
L5

A unified theory of lower Ricci curvature bounds for Riemannian and sub-Riemannian structures

Luca Rizzi
(SISSA)
Abstract

The synthetic theory of Ricci curvature lower bounds introduced more than 15 years ago by Lott-Sturm-Villani has been largely succesful in describing the geometry of metric measure spaces. However, this theory fails to include sub-Riemannian manifolds (an important class of metric spaces, the simplest example being the so-called Heisenberg group). Motivated by Villani's ``great unification'' program, in this talk we propose an extension of Lott-Sturm-Villani's theory, which includes sub-Riemannian geometry. This is a joint work with Barilari (Padua) and Mondino (Oxford). The talk is intended for a general audience, no previous knowledge of optimal transport or sub-Riemannian geometry is required.

Mon, 10 Oct 2022

16:30 - 17:30
L5

*** Cancelled *** Covariance-Modulated Optimal Transport

Franca Hoffmann
(Hausdorff Center for Mathematics)
Abstract

*** Cancelled *** We study a variant of the dynamical optimal transport problem in which the energy to be minimised is modulated by the covariance matrix of the current distribution. Such transport metrics arise naturally in mean field limits of recent Ensemble Kalman methods for inverse problems. We show how the transport problem splits into two separate minimisation problems: one for the evolution of mean and covariance of the interpolating curve, and one for its shape. The latter consists in minimising the usual Wasserstein length under the constraint of maintaining fixed mean and covariance along the interpolation. We analyse the geometry induced by this modulated transport distance on the space of probabilities, as well as the dynamics of the associated gradient flows. This is joint work of Martin Burger, Matthias Erbar, Daniel Matthes and André Schlichting.

Mon, 13 Jun 2022

16:30 - 17:30
L5

Tomographic Strichartz inequalities for the Schrodinger equation

Susana Gutierrez
(Birmingham University)
Abstract

The aim of this talk is to present some novel inequalities for the k-plane transform acting on the modulus square of solutions of the linear time-dependent Schrodinger equation. Our motivation for studying these tomographic expressions comes for virial identities in the context of Schrodinger equations, where tomographic Strichartz estimates of the type we will discuss here appear naturally.

Mon, 06 Jun 2022

16:30 - 17:30
L5

Nematic Liquid crystal flows with free boundary

Yannick Sire
(John Hopkins)
Abstract

I will introduce a new parabolic system for the flow of nematic liquid crystals, enjoying a free boundary condition. After recent works related to the construction of blow-up solutions for several critical parabolic problems (such as the Fujita equation, the heat flow of harmonic maps, liquid crystals without free boundary, etc...), I will  construct a physically relevant weak solution blowing-up in finite time. We make use of  the so-called inner/outer parabolic gluing. Along the way, I will present a set of optimal estimates for the Stokes operator with Navier slip boundary conditions. I will state several open problems related to the partial regularity of the system under consideration. This is joint work with F.-H. Lin (NYU), Y. Zhou (JHU) and J. Wei (UBC). 

Mon, 30 May 2022

16:30 - 17:30
L5

The importance of being convex

Francesco Leonetti
(Universita degli Studi dell'Aquila )
Abstract

In the plane, we know that area of a set is monotone with respect to the inclusion but perimeter fails, in general. If we consider only bounded and convex sets, then also the perimeter is monotone. This property allows us to estimate the minimum number of convex components of a nonconvex set.

When studying integral functionals of the calculus of variations, convexity with respect to minors of the Jacobian matrix is a nice tool for proving existence and regularity of minimizers.

Sometimes it happens that the infimum of a functional on a set is less then the infimum taken on a dense subset: we usually refer to it as Lavrentiev phenomenon. In order to avoid it, convexity helps a lot.

Mon, 23 May 2022

16:30 - 17:30
L5

Implosion mechanisms for compressible fluids with applications

Pierre Raphael
(University of Cambridge)
Abstract

I will review the series of recent results with Merle (IHES), Rodnianski (Princeton) and Szeftel (Paris Sorbonne) concerning the description of implosion mechanisms for viscous three dimensional compressible fluids. I will explain how the problem is connected to the description of blow up mechanisms for classical super critical defocusing models. 

Mon, 16 May 2022

16:30 - 17:30
L5

A quantitative approach to the Navier–Stokes equations

Tobias Barker
(University of Bath)
Abstract

Recently, Terence Tao used a new quantitative approach to infer that certain ‘slightly supercritical’ quantities for the Navier–Stokes equations must become unbounded near a potential blow-up time. In this talk I’ll discuss a new strategy for proving quantitative bounds for the Navier–Stokes equations, as well as applications to behaviours of potentially singular solutions. This talk is based upon joint work with Christophe Prange (CNRS, Cergy Paris Université).

Mon, 07 Mar 2022

16:30 - 17:30
Virtual

Nonlinear wave equations, the weak null condition, and radiation fields

Joseph Keir
(Oxford University)
Abstract

Nonlinear wave equations are ubiquitous in physics, and in three spatial dimensions they can exhibit a wide range of interesting behaviour even in the small data regime, ranging from dispersion and scattering on the one hand, through to finite-time blowup on the other. The type of behaviour exhibited depends on the kinds of nonlinearities present in the equations. In this talk I will explore the boundary between "good" nonlinearities (leading to dispersion similar to the linear waves) and "bad" nonlinearities (leading to finite-time blowup). In particular, I will give an overview of a proof of global existence (for small initial data) for a wide class of nonlinear wave equations, including some which almost fail to exist globally, but in which the singularity in some sense takes an infinite time to form. I will also show how to construct other examples of nonlinear wave equations whose solutions exhibit very unusual asymptotic behaviour, while still admitting global small data solutions.

Mon, 14 Feb 2022

16:30 - 17:30
L3

Stability from rigidity via umbilicity

Julian Scheuer
(Cardiff University)
Abstract

The soap bubble theorem says that a closed, embedded surface of the Euclidean space with constant mean curvature must be a round sphere. Especially in real-life problems it is of importance whether and to what extent this phenomenon is stable, i.e. when a surface with almost constant mean curvature is close to a sphere. This problem has been receiving lots of attention until today, with satisfactory recent solutions due to Magnanini/Poggesi and Ciraolo/Vezzoni.
The purpose of this talk is to discuss further problems of this type and to provide two approaches to their solutions. The first one is a new general approach based on stability of the so-called "Nabelpunktsatz". The second one is of variational nature and employs the theory of curvature flows. 

Mon, 07 Feb 2022

16:30 - 17:30
Virtual

Update on Nonuniform Ellipticity

Giuseppe Mingione
(Università di Parma)
Abstract

Nonuniform Ellipticity is a classical topic in PDE, and regularity of solutions to nonuniformly elliptic and parabolic equations has been studied at length. I will present some recent results in this direction, including the solution to the longstanding issue of the validity of Schauder estimates in the nonuniformly elliptic case obtained in collaboration with Cristiana De Filippis. 

Mon, 31 Jan 2022

16:30 - 17:30
Virtual

Geometric measure theory on singular spaces with lower Ricci bounds and the isoperimetric problem

Daniele Semola
(University of Oxford)
Abstract

The aim of this talk is to present some recent developments of Geometric Measure Theory on non smooth spaces with lower Ricci Curvature bounds, mainly related to the first and second variation formula for the area, and their applications to the isoperimetric problem on non compact manifolds. The reinterpretation of some classical results in Geometric Analysis in a low regularity setting, combined with the compactness and stability theory for spaces with lower curvature bounds, leads to a series of new geometric inequalities for smooth, non compact Riemannian manifolds. The talk is based on joint works with Andrea Mondino, Gioacchino Antonelli, Enrico Pasqualetto and Marco Pozzetta.

Mon, 17 Jan 2022

16:30 - 17:30

CANCELLED

Tobias Barker
(University of Bath)
Mon, 29 Nov 2021

16:00 - 17:00
Virtual

Qualitative properties on a Fokker Planck equation model on neural network

Delphine Salort
(Sorbonne Université)
Abstract

The aim of this talk is to understand the qualitative properties that emerge from a PDE model inspired from neurosciences, in order to understand what are the key processes that lead to mathematical complex patterns for the solutions of this equation. 

Mon, 22 Nov 2021

16:00 - 17:00
L5

Linearised shock-capturing -- a 30-year history and some open problems

Mike Giles
(Oxford University)
Abstract

In this talk I will discuss the development and justification of linearised shock-capturing for aeronautical applications such as flutter, forced response and design optimisation.  At its core is a double-limiting process, reducing both the viscosity and the size of the unsteady or steady perturbation to zero. The design optimisation also requires the consideration of the adjoint equations, but with shock-capturing this is best done at the level of the numerical discretisation, rather than the PDE.

Mon, 01 Nov 2021

16:00 - 17:00
L4

On diffusion equations driven by nonlinear and nonlocal operators

Juan Luis Vazquez
(Universidad Autonoma de Madrid)
Abstract

We  report  on the theory of evolution equations that combine a strongly nonlinear parabolic character with the presence of fractional operators representing long-range interaction effects, mainly of fractional Laplacian type. Examples include nonlocal porous media equations and fractional p-Laplacian operators appearing in a number of variants. 

Recent work concerns the time-dependent fractional p-Laplacian equation with parameter p>1 and fractional exponent 0<s<1. It is the gradient flow corresponding to the Gagliardo–Slobodeckii fractional energy. Our main interest is the asymptotic behavior of solutions posed in the whole Euclidean space, which is given by a kind of Barenblatt solution whose existence relies on a delicate analysis. The superlinear and sublinear ranges involve different analysis and results. 
 

Mon, 18 Oct 2021

16:00 - 17:00
Virtual

Isoperimetric sets in manifolds with nonnegative Ricci curvature and Euclidean volume growth

Elia Bruè
(IAS Princeton)
Abstract

I will present a new existence result for isoperimetric sets of  large volume on manifolds with nonnegative Ricci curvature and  Euclidean volume growth, under an additional assumption on the structure of tangent cones at infinity. After a brief discussion on the sharpness of the additional  assumption, I will show that it is always verified on manifolds with nonnegative sectional curvature. I will finally present the main ingredients of proof emphasizing the key role of nonsmooth techniques tailored for the study of RCD  spaces, a class of metric measure structures satisfying a synthetic notion of Ricci curvature bounded below. This is based on a joint work with G. Antonelli, M. Fogagnolo and M. Pozzetta.