Mon, 15 Oct 2018

16:00 - 17:00
L4

Nonlinear aggregation-diffusion equations in the diffusion-dominated and fair competitions regimes

Jose A. Carrillo
(Imperial College)
Abstract

We analyse under which conditions equilibration between two competing effects, repulsion modelled by nonlinear diffusion and attraction modelled by nonlocal interaction, occurs. I will discuss several regimes that appear in aggregation diffusion problems with homogeneous kernels. I will first concentrate in the fair competition case distinguishing among porous medium like cases and fast diffusion like ones. I will discuss the main qualitative properties in terms of stationary states and minimizers of the free energies. In particular, all the porous medium cases are critical while the fast diffusion are not. In the second part, I will discuss the diffusion dominated case in which this balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrisation techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as time tends to infinity. This talk is based on works in collaboration with S. Hittmeir, B. Volzone and Y. Yao and with V. Calvez and F. Hoffmann.

Mon, 15 Oct 2018
15:45
L6

Formal Moduli Problems via Partition Lie Algebras

Lukas Brantner
(Oxford University)
Abstract

If k is a field of characteristic zero, a theorem of Lurie and Pridham establishes an equivalence between formal moduli problems and differential graded Lie algebras over k. We generalise this equivalence in two different ways to arbitrary ground fields by using “partition Lie algebras”. These mysterious new gadgets are intimately related to the genuine equivariant topology of the partition complex, which allows us to access the operations acting on their homotopy groups (relying on earlier work of Dyer-Lashof, Priddy, Goerss, and Arone-B.). This is joint work with Mathew.

Mon, 15 Oct 2018

15:45 - 16:45
L3

Deep calibration of the rough Bergomi model

BENJAMIN STEMPER
(WIAS Berlin)
Abstract

Unlike standard bivariate diffusion models, the rough Bergomi model by Bayer, Friz, and Gatheral (2016) allows to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. However, falling into the class of so-called rough stochastic volatility models sparked by Alo`s, Leo ́n, and Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson, and Rosenbaum (2018), its non-Markovianity poses serious mathematical and computational challenges. To date, calibrating rough Bergomi remained prohibitively expensive since standard calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, which in the case of rough Bergomi involves a costly Monte Carlo simulation (Bennedsen, Lunde, & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier, & Muguruza, 2017). In this paper, we resolve the issue by combining a standard Levenberg-Marquardt calibration routine with a neural network regression, replacing expensive MC simulations with cheap forward runs of a network trained to approximate the implied volatility map. Some numerical results show the prowess of this approach.

Mon, 15 Oct 2018

14:15 - 15:15
L4

On Controllability of Waves and Geometric Carleman Estimates

Arick Shao
(QMUL)
Abstract

In this talk, we consider the question of exact (boundary) controllability of wave equations: whether one can steer their solutions from any initial state to any final state using appropriate boundary data. In particular, we discuss new and fully general results for linear wave equations on time-dependent domains with moving boundaries. We also discuss the novel geometric Carleman estimates that are the main tools for proving these controllability results

Mon, 15 Oct 2018

13:00 - 14:00
N3.12

Mathematrix lunches - Imposter Syndrome

Abstract

The meeting on Monday 15th October will be on Impostor Syndrome. In this meeting we will discuss what impostor syndrome is, what might be the causes of it, and some advice for people who are struggling with it. For anyone who wants to read up on what it is and some different types of impostor syndrome in advance, we recommend this blog post: https://www.themuse.com/advice/5-different-types-of-imposter-syndrome-a…. If you have a smart phone or tablet that you can bring with you, we encourage you to, as we will have some anonymous voting, and the more of you that can join in, the better!

We hope to see many of you there again: Quillen Room (N3.12), Monday 1-2pm.

Mon, 15 Oct 2018
12:45
L3

Modular graph functions as iterated Eisenstein integrals

Erik Panzer
(Oxford)
Abstract

Superstring scattering amplitudes in genus one have a low-energy expansion in terms of certain real analytic modular forms, called modular graph functions (D'Hoger, Green, Gürdogan and Vanhove). I will sketch the proof that these functions belong to a family of iterated integrals of modular forms (a generalization of Eichler integrals), recently introduced by Francis Brown, which explains many of their properties. The main tools are elliptic multiple polylogarithms (Brown and Levin), single-valued versions thereof, and elliptic multiple zeta values (Enriquez).

Fri, 12 Oct 2018

16:00 - 17:00
L1

Francis Bach - Gossip of Statistical Observations using Orthogonal Polynomials

Francis Bach
(CNRS and Ecole Normale Superieure Paris)
Abstract

Consider a network of agents connected by communication links, where each agent holds a real value. The gossip problem consists in estimating the average of the values diffused in the network in a distributed manner. Current techniques for gossiping are designed to deal with worst-case scenarios, which is irrelevant in applications to distributed statistical learning and denoising in sensor networks. We design second-order gossip methods tailor-made for the case where the real values are i.i.d. samples from the same distribution. In some regular network structures, we are able to prove optimality of our methods, and simulations suggest that they are efficient in a wide range of random networks. Our approach of gossip stems from a new acceleration framework using the family of orthogonal polynomials with respect to the spectral measure of the network graph (joint work with Raphaël Berthier, and Pierre Gaillard).

Fri, 12 Oct 2018

14:00 - 15:00
L1

Making the most of intercollegiate classes

George Dickinson, Dr Richard Earl, Dr Neil Laws, Dr Vicky Neale and Dr Alex Rogers
Abstract

What should you expect in intercollegiate classes?  What can you do to get the most out of them?  In this session, experienced class tutors will share their thoughts, and a current student will offer tips and advice based on their experience.  

All undergraduate and masters students welcome, especially Part B and MSc students attending intercollegiate classes. (Students who attended the Part C/OMMS induction event will find significant overlap between the advice offered there and this session!)
 

Thu, 11 Oct 2018

16:00 - 17:00
L6

Polya’s Program for the Riemann Hypothesis and Related Problems

Ken Ono
(Emory)
Abstract

In 1927 Polya proved that the Riemann Hypothesis is equivalent to the hyperbolicity of Jensen polynomials for Riemann’s Xi-function. This hyperbolicity has only been proved for degrees d=1, 2, 3. For each d we prove the hyperbolicity of all but (perhaps) finitely many Jensen polynomials. We obtain a general theorem which models such polynomials by Hermite polynomials. This theorem also allows us to prove a conjecture of Chen, Jia, and Wang on the partition function. This result can be thought of as a proof of GUE for the Riemann zeta function in derivative aspect. This is joint work with Michael Griffin, Larry Rolen, and Don Zagier.
 

Thu, 11 Oct 2018

16:00 - 17:30
L4

Model-free version of the BDG inequality and its applications

Rafal Lochowski
(Warsaw School of Economics)
Abstract

In my talk I will briefly introduce model-free approach to mathematical finance, which uses Vovk's outer measure. Then, using pathwise BDG inequality obtained by Beigbloeck and Siorpaes and modification of Vovk's measure, I will present and prove a model-free version of this inequality for continuous price paths. Finally, I will discuss possible applications, like the existence and uniqueness of solutions of SDEs driven by continuous, model-free price paths. The talk will be based on the joint work with Farai Mhlanga and Lesiba Galane (University of Limpopo, South Africa)

Thu, 11 Oct 2018

16:00 - 17:30
L3

Field-free trapping and measurement of single molecules in solution

Madhavi Krishnan
(University of Zurich)
Abstract

The desire to “freely suspend the constituents of matter” in order to study their behavior can be traced back over 200 years to the diaries of Lichtenberg. From radio-frequency ion traps to optical tweezing of colloidal particles, existing methods to trap matter in free space or solution rely on the use of external fields that often strongly perturb the integrity of a macromolecule in solution. We recently introduced the ‘electrostatic fluidic trap’, an approach that exploits equilibrium thermodynamics to realise stable, non-destructive confinement of single macromolecules in room temperature fluids, and represents a paradigm shift in a nearly century-old field. The spatio-temporal dynamics of a single electrostatically trapped object reveals fundamental information on its properties, e.g., size and electrical charge. We have demonstrated the ability to measure the electrical charge of a single macromolecule in solution with a precision much better than a single elementary charge. Since the electrical charge of a macromolecule in solution is in turn a strong function of its 3D conformation, our approach enables for the first time precise, general measurements of the relationship between 3D structure and electrical charge of a single macromolecule, in real time. I will present our most recent advances in this emerging area of molecular measurement and show how such high-precision measurement at the nanoscale may be able to unveil the presence of previously unexpected phenomena in intermolecular interactions in solution.

Thu, 11 Oct 2018

14:00 - 15:00
L4

Least-Squares Padé approximation of Helmholtz problems with parametric/stochastic wavenumber

Prof Fabio Nobile
(EPFL Lausanne)
Abstract

The present work concerns the approximation of the solution map associated to the parametric Helmholtz boundary value problem, i.e., the map which associates to each (real) wavenumber belonging to a given interval of interest the corresponding solution of the Helmholtz equation. We introduce a single-point Least Squares (LS) rational Padé-type approximation technique applicable to any meromorphic Hilbert space-valued univariate map, and we prove the uniform convergence of the Padé approximation error on any compact subset of the interval of interest that excludes any pole. We also present a simplified and more efficient version, named Fast LS-Padé, applicable to Helmholtz-type parametric equations with normal operators.

The LS-Padé techniques are then employed to approximate the frequency response map associated to various parametric time-harmonic wave problems, namely, a transmission/reflection problem, a scattering problem and a problem in high-frequency regime. In all cases we establish the meromorphy of the frequency response map. The Helmholtz equation with stochastic wavenumber is also considered. In particular, for Lipschitz functionals of the solution, and their corresponding probability measures, we establish weak convergence of the measure derived from the LS-Padé approximant to the true one. Two-dimensioanl numerical tests are performed, which confirm the effectiveness of the approximation method.As of the dates

 Joint work with: Francesca Bonizzoni and  Ilaria Perugia (Uni. Vienna), Davide Pradovera (EPFL)

Thu, 11 Oct 2018

12:00 - 13:00
L4

Deep Neural Networks and PDEs: Approximation Theory and Structural Properties

Philipp Petersen
(University of Oxford)
Abstract

Novel machine learning techniques based on deep learning, i.e., the data-driven manipulation of neural networks, have reported remarkable results in many areas such as image classification, game intelligence, or speech recognition. Driven by these successes, many scholars have started using them in areas which do not focus on traditional machine learning tasks. For instance, more and more researchers are employing neural networks to develop tools for the discretisation and solution of partial differential equations. Two reasons can be identified to be the driving forces behind the increased interest in neural networks in the area of the numerical analysis of PDEs. On the one hand, powerful approximation theoretical results have been established which demonstrate that neural networks can represent functions from the most relevant function classes with a minimal number of parameters. On the other hand, highly efficient machine learning techniques for the training of these networks are now available and can be used as a black box. In this talk, we will give an overview of some approaches towards the numerical treatment of PDEs with neural networks and study the two aspects above. We will recall some classical and some novel approximation theoretical results and tie these results to PDE discretisation. Afterwards, providing a counterpoint, we analyse the structure of network spaces and deduce considerable problems for the black box solver. In particular, we will identify a number of structural properties of the set of neural networks that render optimisation over this set especially challenging and sometimes impossible. The talk is based on joint work with Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, Felix Voigtlaender, and Mones Raslan

Wed, 10 Oct 2018
16:00
C5

Cubulating Groups

Sam Shepherd
(Oxford University)
Abstract

Cubulating a group means finding a proper cocompact action on a CAT(0) cube complex. I will describe how cubulating a group tells us some nice properties of the group, and explain a general strategy for finding cubulations.

Wed, 10 Oct 2018
11:00
N3.12

Hilbert's 10th Problem: What We Know and What We Don't

Brian Tyrrell
(University of Oxford)
Abstract

In this talk I will introduce Hilbert's 10th Problem (H10) and the model-theoretic notions necessary to explore this problem from the perspective of mathematical logic. I will give a brief history of its proof, talk a little about its connection to decidability and definability, then close by speaking about generalisations of H10 - what has been proven and what has yet to be discovered.

Tue, 09 Oct 2018

19:30 - 21:15
L1

James Sparks & the City of London Sinfonia - Bach and the Cosmos SOLD OUT

James Sparks and City of London Sinfonia
(University of Oxford)
Abstract

Johann Sebastian Bach was the most mathematical of composers. Oxford Mathematician and Cambridge organ scholar James Sparks will explain just how mathematical and City of London Sinfonia will elaborate with a special performance of the Goldberg Variations. 

---

James Sparks - Bach and the Cosmos (30 minutes)

City of London Sinfonia - J S Bach arr. Sitkovetsky, Goldberg Variations (70 minutes)

Alexandra Wood - Director/Violin

--

Please email @email to register

Watch live:
https://www.facebook.com/OxfordMathematics
https://www.livestream.com/oxuni/Bach-Cosmos

The Oxford Mathematics Public Lectures are generously supported by XTX Markets

Tue, 09 Oct 2018
16:00
L5

Parallels in universality between the universal algorithm and the universal finite set

Joel David Hamkins
(Oxford University)
Abstract

Abstract: The universal algorithm is a Turing machine program that can in principle enumerate any finite sequence of numbers, if run in the right model of PA, and furthermore, can always enumerate any desired extension of that sequence in a suitable end-extension of that model. The universal finite set is a set-theoretic analogue, a locally verifiable definition that can in principle define any finite set, in the right model of set theory, and can always define any desired finite extension of that set in a suitable top-extension of that model. Recent work has uncovered a $\Sigma_1$-definable version that works with respect to end-extensions. I shall give an account of all three results, which have a parallel form, and describe applications to the model theory of arithmetic and set theory. Post questions and commentary on my blog at http://jdh.hamkins.org/parallels-in-universality-oxford-math-logic-semi…;

Tue, 09 Oct 2018
14:30
L6

Subsets of Cayley graphs that induce many edges

Oliver Janzer
(Cambridge)
Abstract

Let $G$ be a regular graph of degree $d$ and let $A\subset V(G)$. Say that $A$ is $\eta$-closed if the average degree of the subgraph induced by $A$ is at least $\eta d$. This says that if we choose a random vertex $x\in A$ and a random neighbour $y$ of $x$, then the probability that $y\in A$ is at least $\eta$. In recent joint work with Tim Gowers, we were aiming to obtain a qualitative description of closed subsets of the Cayley graph $\Gamma$ whose vertex set is $\mathbb{F}_2^{n_1}\otimes \dots \otimes \mathbb{F}_2^{n_d}$ with two vertices joined by an edge if their difference is of the form $u_1\otimes \cdots \otimes u_d$. For the matrix case (that is, when $d=2$), such a description was obtained by Khot, Minzer and Safra, a breakthrough that completed the proof of the 2-to-2 conjecture. We have formulated a conjecture for higher dimensions, and proved it in an important special case. In this talk, I will sketch this proof. Also, we have identified a statement about $\eta$-closed sets in Cayley graphs on arbitrary finite Abelian groups that implies the conjecture and can be considered as a "highly asymmetric Balog-Szemerédi-Gowers theorem" when it holds. I will present an example to show that this statement is not true for an arbitrary Cayley graph. It remains to decide whether the statement can be proved for the Cayley graph $\Gamma$.

Tue, 09 Oct 2018

14:30 - 15:00
L5

Drying of Colloid Suspension

Zhen Shao
(Oxford)
Abstract

The next generation emissive displays including quantum dot LED(QLED) and organic LED(OLED) could be efficiently manufactured by inkjet printing, where nano-scale droplets are injected in banked substrate and after evaporation they leave layers of thin film that forms pixels of a display. This novel manufacturing method would greatly reduce cost and improve reliability. However, it is observed in practice that the deposit becomes much thicker near the bank edge and emission is faint there. This motivated the project and in this talk, we will mathematically model the phenomeno, understand its origin and investigate ways of making more uniform deposit by means of simulation.

Tue, 09 Oct 2018

14:15 - 15:30
L4

Abstract regular polytopes and Y-shaped presentations for subgroups of the Monster sporadic simple group

Dima Pasechnik
(Oxford)
Abstract

Abstract regular polytopes are finite quotients of Coxeter complexes
with string diagram, satisfying a natural intersection property, see
e.g. [MMS2002]. They arise in a number of geometric and group-theoretic
contexts. The first class of such objects, beyond the
well-understood examples coming from finite and affine Coxeter groups,
are locally toroidal cases, e.g.  extensions of quotients of the affine
F_4 complex [3,3,4,3].  In 1996 P.McMullen & E.Schulte constructed a
number of examples of locally toroidal abstract regular polytopes of
type [3,3,4,3,3], and conjectured completeness of their list. We
construct counterexamples to the conjecture using a Y-shaped
presentation for a subgroup of the Monster, and discuss various
related questions.
 

Tue, 09 Oct 2018

14:00 - 14:30
L5

Efficient white noise sampling and coupling for multilevel Monte Carlo

Matteo Croci
(Oxford)
Abstract

When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise the efficient sampling of white noise realizations can be challenging. In this talk we present a novel sampling technique that can be used to efficiently compute white noise samples in a finite element and multilevel Monte Carlo (MLMC) setting.
After discretization, the action of white noise on a test function yields a Gaussian vector with the FEM mass matrix as covariance. Sampling such a vector requires an expensive Cholesky factorization and for this reason P0 representations, for which the mass matrix is diagonal, are generally preferred in the literature. This however has other disadvantages. In this talk we introduce an alternative factorization that is naturally parallelizable and has linear cost and memory complexity (in the number of mesh elements).
Moreover, in a MLMC framework the white noise samples must be coupled between subsequent levels so as to respect the telescoping sum. We show how our technique can be used to enforce this coupling even in the case in which the hierarchy is non-nested via a supermesh construction. We conclude the talk with numerical experiments that demonstrate the efficacy of our method. We observe optimal convergence rates for the finite element solution of the elliptic SPDEs of interest. In a MLMC setting, a good coupling is enforced and the telescoping sum is respected.
 

Tue, 09 Oct 2018
12:00
C1

Measuring rank robustness in scored protein interaction networks

Lyuba V. Bozhilova
(University of Oxford)
Abstract

Many protein interaction databases provide confidence scores based on the experimental evidence underpinning each in- teraction. The databases recommend that protein interac- tion networks (PINs) are built by thresholding on these scores. We demonstrate that varying the score threshold can re- sult in PINs with significantly different topologies. We ar- gue that if a node metric is to be useful for extracting bio- logical signal, it should induce similar node rankings across PINs obtained at different thresholds. We propose three measures—rank continuity, identifiability, and instability— to test for threshold robustness. We apply these to a set of twenty-five metrics of which we identify four: number of edges in the step-1 ego network, the leave-one-out dif- ference in average redundancy, average number of edges in the step-1 ego network, and natural connectivity, as robust across medium-high confidence thresholds. Our measures show good agreement across PINs from different species and data sources. However, analysis of synthetically gen- erated scored networks shows that robustness results are context-specific, and depend both on network topology and on how scores are placed across network edges. 

Tue, 09 Oct 2018

12:00 - 13:15
L4

The classical double copy: gravity from Yang-Mills

Chris White
(QMUL)
Abstract

Non-abelian gauge theories underly particle physics, including collision processes at particle accelerators. Recently, quantum scattering probabilities in gauge theories have been shown to be closely related to their counterparts in gravity theories, by the so-called double copy. This suggests a deep relationship between two very different areas of physics, and may lead to new insights into quantum gravity, as well as novel computational methods. This talk will review the double copy for amplitudes, before discussing how it may be extended to describe exact classical solutions such as black holes. Finally, I will discuss hints that the double copy may extend beyond perturbation theory. 

Mon, 08 Oct 2018

16:00 - 17:00
L4

A variational problem in L-infinity involving the Laplacian

Roger Moser
(University of Bath)
Abstract

Suppose that we want to minimise the L-infinity norm of the Laplacian of a function (or a similar quantity) under Dirichlet boundary conditions. This is a convex, but not strictly convex variational problem. Nevertheless, it turns out that it has a unique solution, which is characterised by a system of PDEs. The behaviour is thus quite different from the better-known first order problems going back to Aronsson. This is joint work with N. Katzourakis (Reading).
 

Mon, 08 Oct 2018
15:45
L6

The loop space homology of a small category

Robert Oliver
(University Paris 13)
Abstract


In an article published in 2009, Dave Benson described, for a finite group $G$, the mod $p$ homology of the space $\Omega(BG^\wedge_p)$ --- the loop space of the $p$-completion of $BG$ --- in purely algebraic terms. In joint work with Carles Broto and Ran Levi, we have tried to better understand Benson's result by generalizing it. We showed that when $\mathcal{C}$ is a small category, $|\mathcal{C}|$ is its geometric realization, $R$ is a commutative ring, and $|\mathcal{C}|^+_R$ is a plus construction of $|\mathcal{C}|$ with respect to homology with coefficients in $R$, then $H_*(\Omega(|\mathcal{C}|^+_R);R)$ is the homology any chain complex of projective $R\mathcal{C}$-modules that satisfies certain conditions. Benson's theorem is then the special case where $\mathcal{C}$ is the category associated to a finite group $G$ and $R=F_p$, so that $p$-completion is a special case of the plus construction.
 

Mon, 08 Oct 2018

15:45 - 16:45
L3

Fine properties of fractional Brownian motions on Wiener space

JIAWEI LI
(University of Oxford)
Abstract

We study several important fine properties for the family of fractional Brownian motions with Hurst parameter H under the (p,r)-capacity on classical Wiener space introduced by Malliavin. We regard fractional Brownian motions as Wiener functionals via the integral representation discovered by Decreusefond and \"{U}st\"{u}nel, and show non differentiability, modulus of continuity, law of iterated Logarithm(LIL) and self-avoiding properties of fractional Brownian motion sample paths using Malliavin calculus as well as the tools developed in the previous work by Fukushima, Takeda and etc. for Brownian motion case.

 

Mon, 08 Oct 2018

14:15 - 15:15
L3

On smile properties of volatility derivatives and exotic products: understanding the VIX skew

ELISA ALOS ALCALDE
(Universitat Pompeu Fabra)
Abstract

We develop a method to study the implied volatility for exotic options and volatility derivatives with European payoffs such as VIX options. Our approach, based on Malliavin calculus techniques, allows us to describe the properties of the at-the-money implied volatility (ATMI) in terms of the Malliavin derivatives of the underlying process. More precisely, we study the short-time behaviour of the ATMI level and skew. As an application, we describe the short-term behavior of the ATMI of VIX and realized variance options in terms of the Hurst parameter of the model, and most importantly we describe the class of volatility processes that generate a positive skew for the VIX implied volatility. In addition, we find that our ATMI asymptotic formulae perform very well even for large maturities. Several numerical examples are provided to support our theoretical results.  

Mon, 08 Oct 2018

14:15 - 15:15
L4

Moment maps and non-reductive geometric invariant theory

Frances Kirwan
(Oxford)
Abstract
When a complex reductive group acts linearly on a projective variety, the GIT quotient can be identified with an appropriate symplectic quotient. The aim of this talk is to discuss an analogue of this description for GIT quotients by suitable non-reductive actions. In general GIT for non-reductive linear algebraic group actions is much less well behaved than for reductive actions. However when the unipotent radical U of a linear algebraic group is graded, in the sense that a Levi subgroup has a central one-parameter subgroup which acts by conjugation on U with all weights strictly positive, then GIT for a linear action of the group on a projective variety has better properties than in the general case, and (at least under some additional conditions) we can ask for moment map descriptions of the quotients.
Mon, 08 Oct 2018

13:00 - 14:00
N3.12

Mathematrix lunches - Meet and Greet

Abstract

This is a welcome to everyone who is interested in discussing and learning more about topics relating to life in academia and issues faced by minorities. We will tell you more about Mathematrix and the events upcoming in the term, as well as discussing ideas for future terms.

All staff, ECRs and postgrad students are invited to join. The lunches are free, relaxed and informal, and people may come and go as they please.
 

Mon, 08 Oct 2018
12:45
L3

Twisted indices of 3d N=4 theories and moduli space of quasi-maps

Heeyeon Kim
(Oxford)
Abstract

I will talk about the Witten index of supersymmetric quantum mechanics obtained from 3d gauge theories compacted on a Riemann surface. In particular, I will show that the twisted indices of 3d N=4 theories compute enumerative invariants of the moduli space, which can be identified as a space of quasi-maps to the Higgs branch. I will also discuss 3d mirror symmetry in this context which provides a non-trivial relation between a pair of generating functions of the invariants.

Fri, 05 Oct 2018

12:00 - 13:00
L5

Regularity theory for Maxwell's equations

Giovanni S Alberti
(University of Genoa)
Abstract


The focus of this talk is the regularity theory for time-harmonic Maxwell's equations with complex anisotropic parameters. By using the Helmholtz decomposition of the fields, we show how the problem can be completely reduced to a regularity question for elliptic equations, for which classical results may be applied. In particular, we prove the Hölder regularity of solutions under minimal assumptions on the coefficients.
 

Thu, 27 Sep 2018
14:00
C2

A generalization of Steinberg theory and an exotic moment map

Kyo Nishiyama
(Aoyama Gakuin University Tokyo)
Abstract

For a reductive group $ G $, Steinberg established a map from the Weyl group to nilpotent $ G $-orbits using momentmaps on double flag varieties.  In particular, in the case of the general linear group, he re-interpreted the Robinson-Schensted correspondence between the permutations and pairs of standard tableaux of the same shape in terms of product of complete flags.

We generalize his theory to the case of symmetric pairs $ (G, K) $, and obtained two different maps.  In the case where $ (G, K) = (\GL_{2n}, \GL_n \times \GL_n) $, one of the maps is a generalized Steinberg map, which induces a generalization of the RS correspondence for degenerate permutations.  The other is an exotic moment map, which maps degenerate permutations to signed Young diagrams, i.e., $ K $-orbits in the Cartan space $ (\lie{g}/\lie{k})^* $.

We explain geometric background of the theory and combinatorial procedures which produces the above mentioned maps.

This is an on-going joint work with Lucas Fresse.
 

Mon, 24 Sep 2018

17:30 - 18:30
L1

Roger Penrose - Eschermatics SOLD OUT

Roger Penrose
(University of Oxford)
Abstract

Oxford Mathematics and the Clay Mathematics Institute Public Lectures

Roger Penrose - Eschermatics
24 September 2018 - 5.30pm

Roger Penrose’s work has ranged across many aspects of mathematics and its applications from his influential work on gravitational collapse to his work on quantum gravity. However, Roger has long had an interest in and influence on the visual arts and their connections to mathematics, most notably in his collaboration with Dutch graphic artist M.C. Escher. In this lecture he will use Escher’s work to illustrate and explain important mathematical ideas.

Oxford Mathematics is hosting this special event in its Public Lecture series during the conference to celebrate the 20th Anniversary of the foundation of the Clay Mathematics Institute. After the lecture Roger will be presented with the Clay Award for the Dissemination of Mathematical Knowledge.

5.30-6.30pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/Penrose

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 21 Sep 2018

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Valentin Sulzer, Caoimhe Rooney, Alissa Kamilova, Attila Kovacs
(Mathematical Institute)
Fri, 14 Sep 2018

10:00 - 11:00
L3

Deterministic particle approximation for local and nonlocal transport equations

Marco Di Francesco
(University of L' Aquila)
Abstract

The derivation of first-order nonlinear transport PDEs via interacting particles subject only to deterministic forces is crucial in the socio-biological sciences and in the real world applications (e.g. vehicular traffic, pedestrian movements), as it provides a rigorous justification to a "continuum" description in situations more naturally described by a discrete approach. This talk will collect recent results on the derivation of entropy solutions to scalar conservation laws (arising e.g. in traffic flow) as many particle limits of "follow-the-leader"-type ODEs, including extensions to the case with Dirichlet boundary conditions and to the Hughes model for pedestrian movements (the results involve S. Fagioli, M. D. Rosini, G. Russo). I will then describe a recent extension of this approach to nonlocal transport equations with a "nonlinear mobility" modelling prevention of overcrowding for high densities (in collaboration with S. Fagioli and E. Radici). 

Wed, 05 Sep 2018

17:00 - 18:00
L1

Persi Diaconis - Chance and Evidence

Persi Diaconis
(Stanford University)
Abstract

In this lecture Persi Diaconis will take a look at some of our most primitive images of chance - flipping a coin, rolling a roulette wheel and shuffling cards - and via a little bit of mathematics (and a smidgen of physics) show that sometimes things are not very random at all. Indeed chance is sometimes confused with frequency and this confusion caries over to a confusion between chance and evidence. All of which explains our wild misuse of probability and statistical models.

Persi Diaconis is world-renowned for his study of mathematical problems involving randomness and randomisation. He is the co-author of 'Ten Great Ideas about Chance (2017) and is the Mary V. Sunseri Professor of Statistics and Mathematics at Stanford University. 

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/PersiDiaconis

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 10 Aug 2018

11:00 - 12:00
L6

Behaviors of Navier-Stokes(Euler)-Fokker-Planck equations

Hailiang Li
(Capital Normal University)
Abstract

We consider the behaviors of global solutions to the initial value problems for the multi-dimensional Navier-Stokes(Euler)-Fokker-Planck equations. It is shown that due to the micro-macro coupling effects of relaxation damping type, the sound wave type propagation of this NSFP or EFP system for two-phase fluids is observed with the wave speed determined by the two-phase fluids. This phenomena can not be observed for the pure Fokker-Planck equation and the Navier-Stokes(Euler) equation with frictional damping.

Mon, 06 Aug 2018
16:15
L5

COW seminar: Moduli Spaces of Unstable Objects via Non-Reductive GIT

Joshua Jackson
(Oxford University)
Abstract

Geometric Invariant Theory is a central tool in the construction of moduli spaces, and shares the property ubiquitous among such tools that certain so-called 'unstable' objects must be excluded if the moduli space is to be well behaved. However, instability in GIT is a structured phenomenon: after making a choice of a certain invariant inner product, one has the HKKN stratification of the parameter space which, morally, sorts the objects according to how unstable they are. I will explain how one can use recent results of Berczi-Doran-Hawes-Kirwan in Non-Reductive GIT to perform quotients of these unstable strata as well, extending the classifications given by classical moduli spaces. This can be carried out, at least in principle, for any moduli problem that can be posed using GIT, and I will discuss two examples in particular: unstable (i.e. singular) curves, and coherent sheaves of fixed Harder-Narasimhan type. The latter of these is joint work with Gergely Berczi, Victoria Hoskins and Frances Kirwan.
 

Mon, 06 Aug 2018
14:45
L5

COW seminar: Stability conditions with massless objects

Jon Woolf
(University of Liverpool)
Abstract

I will explain how the definition of Bridgeland stability condition on a triangulated category C can be generalised to allow for massless objects. This allows one to construct a partial compactification of the stability space Stab(C) in which each `boundary stratum' is related to Stab(C/N) for a thick subcategory N of C, and has a neighbourhood which fibres over (an open subset of) Stab(N). This is joint work with Nathan Broomhead, David Pauksztello, and David Ploog.
 

Mon, 06 Aug 2018
13:30
L5

COW seminar: Cosection localization and quantum singularity theory

Young-Hoon Kiem
(Seoul National University)
Abstract

Enumerative  invariants since 1995 are defined as integrals of cohomology classes over a particular homology class, called the virtual fundamental class. When there is a torus action, the virtual fundamental class is localized to the fixed points and this turned out to be the most effective technique for computation of the virtual integrals so far. About 10 years ago, Jun Li and I discovered that when there is a cosection of the obstruction sheaf, the virtual fundamental class is localized to the zero locus of the cosection. This also turned out to be quite useful for computation of Gromov-Witten invariants and more. In this talk, I will discuss a generalization of the cosection localization to real classes which provides us with a purely topological theory of Fan-Jarvis-Ruan-Witten invariants (quantum singularity theory) as well as some GLSM invariants. Based on a joint work with Jun Li at arXiv:1806.00116.
 

Thu, 02 Aug 2018
12:00
C6

A mathematical theory for the construction of the turbulent two point correlation functions

James Glimm
(Stony Brook University)
Abstract

We solve the construction of the turbulent two point functions in the following manner:

A mathematical theory, based on a few physical laws and principles, determines the construction of the turbulent two point function as the expectation value of a statistically defined random field. The random field is realized via an infinite induction, each step of which is given in closed form.

Some version of such models have been known to physicists for some 25 years. Our improvements are two fold:

  1. Some details in the reasoning appear to be missing and are added here.
  2. The mathematical nature of the algorithm, difficult to discern within the physics presentation, is more clearly isolated.

Because the construction is complex, usable approximations, known as surrogate models, have also been developed.

The importance of these results lies in the use of the two point function to improve on the subgrid models of Lecture I.

We also explain limitations. For the latter, we look at the deflagration to detonation transition within a type Ia supernova and decide that a completely different methodology is recommended. We propose to embed multifractal ideas within a physics simulation package, rather than attempting to embed the complex formalism of turbulent deflagration into the single fluid incompressible model of the two point function. Thus the physics based simulation model becomes its own surrogate turbulence model.

Thu, 02 Aug 2018

11:00 - 12:00
C6

Turbulence models and convergence rates

James Glimm
(Stony Brook University)
Abstract

We discuss three methods for the simulation of turbulent fluids. The issue we address is not the important issue of numerical algorithms, but the even more basic question of the equations to be solved, otherwise known as the turbulence model.  These equations are not simply the Navier-Stokes equations, but have extra, turbulence related terms, related to turbulent viscosity, turbulent diffusion and turbulent thermal conductivity. The extra terms are not “standard textbook” physics, but are hypothesized based on physical reasoning. Here we are concerned with these extra terms.

The many models, divided into broad classes, differ greatly in

Dependence on data
Complexity
Purpose and usage

For this reason, each of the classes of models has its own rationale and domain of usage.

We survey the landscape of turbulence models.

Given a turbulence model, we ask: what is the nature of convergence that a numerical algorithm should strive for? The answer to this question lies in an existence theory for the Euler equation based on the Kolmogorov 1941 turbulent scaling law, taken as a hypothesis (joint work with G-Q Chen).

Wed, 01 Aug 2018

12:00 - 13:00
C6

Bressan’s Conjecture on compactness of flow for BV vector fields

Stefano Bianchini
(SISSA-ISAS)
Abstract

When studying a systems of conservation laws in several space dimensions, A. Bressan conjectured that the flows $X^n(t)$ generated by a smooth vector fields $\mathbf b^n(t,x)$,
\[
\frac{d}{dt} X^n(t,y) = \mathbf b^n(t,X(t,y)),
\]
are compact in $L^1(I\!\!R^d)$ for all $t \in [0,T]$ if $\mathbf b^n \in L^\infty \cap \mathrm{BV}((0,t) \times I\!\!R^d)$ and they are nearly incompressible, i.e.
\[
\frac{1}{C} \leq \det(\nabla_y X(t,y)) \leq C
\]
for some constant $C$. This conjecture is implied by the uniqueness of the solution to the linear transport equation
\[
\partial_t \rho + \mathrm{div}_x(\rho \mathbf b) = 0, \quad \rho \in L^\infty((0,T) \times I\!\!R^d),
\]
and it is the natural extension of a series of results concerning vector fields $\mathbf b(t,x)$ with Sobolev regularity.

We will give a general framework to approach the uniqueness problem for the linear transport equation and to prove Bressan's conjecture.

Fri, 27 Jul 2018

16:30 - 17:15
L6

How did Chinese deal with a scientific problem: Building the solar eclipse theory in ancient China (the 7th-10th century AD)

Anjing Qu
(Xi'an)
Abstract

In the 6th century, the phenomena of irregularity of the solar motion and parallax of the moon were found by Chinese astronomers. This made the calculation of solar eclipse much more complex than before. The strategy that Chinese calendar-makers dealt with was different from the geometrical model system like Greek astronomers taken as. What Chinese astronomers chose is a numerical algorithm system which was widely taken as a thinking mode to construct the theory of mathematical astronomy in old China. 

Fri, 27 Jul 2018

16:00 - 16:30
L6

William Burnside and the Mystery Letter

Howard Emmens
Abstract

Relatively little is known about the correspondence of William Burnside, a pioneer of group theory in the UK. There are only a few dozen extant letters from or to him, though they are not without interest. However, one of the most noteworthy letters to or at least about him, in that it had a special mention in his obituary in the Proceedings of the Royal Society, has not been positively identified. It's not clear who it was from or when it was sent. We'll look at some possibilities.

Fri, 27 Jul 2018

15:00 - 15:30
L6

Meeting under the integral sign? The 1936 Oslo International Congress of Mathematicians

Christopher Hollings
(Oxford)
Abstract

The International Congresses of Mathematicians (ICMs) have taken place at (reasonably) regular intervals since 1897, and although their participants may have wanted to confine these events purely to mathematics, they could not help but be affected by wider world events.  This is particularly true of the 1936 ICM, held in Oslo.  In this talk, I will give a whistle-stop tour of the early ICMs, before discussing the circumstances of the Oslo meeting, with a particular focus on the activities of the Nazi-led German delegation.

Fri, 27 Jul 2018

14:30 - 15:00
L6

About the nature of π: Proofs and conjectures in Lambert's Mémoire (1768)

Eduardo Dorrego López
(Seville)
Abstract

The emergence of analytic methods in the 17th century opened a new way in order to tackle the elucidation of certain quantities. The strong presence of the circle-squaring problem, focused mainly the attention on π, on which besides the serious doubts about its rationality, it arises an awareness---boosted by the new algebraic approach---of the difficulty of framing it inside algebraic boundaries. The term ``transcendence'' emerges in this context but with a very ambiguous meaning.

The first great step towards its comprehension, took place in the 18th century and came from Johann Heinrich Lambert's hand, who using a new analytical machinery---continued fractions---gave the first proof of irrationality of π. The problem of keeping this number inside the algebraic limits, also receives an especial attention at the end of his Mémoires sur quelques propriétés remarquables des quantités transcendantes, circulaires et logarithmiques, published by the Berlin Academy of Science in 1768. In this work, Lambert after giving to the term ``transcendence'' its modern meaning, conjectures the transcendence of π and therefore the impossibility of squaring the circle.