12:00
Persistent homology and the approximation of intrinsic volumes
Abstract
Persistent homology is an algebraic tool for quantifying topological features of shapes and functions, which has recently found wide applications in data and shape analysis. In the first and introductory part of this talk I recall the underlying ideas and basic concepts of this very active field of research. In the second part, I plan to sketch a concrete application of this concept to digital image processing.
InFoMM CDT Group Meeting
Voronoi summation and applications to subconvexity
Abstract
We will briefly revisit Voronoi summation in its classical form and mention some of its many applications in number theory. We will then show how to use the global Whittaker model to create Voronoi type formulae. This new approach allows for a wide range of weights and twists. In the end we give some applications to the subconvexity problem of degree two $L$-functions.
16:00
Witten-Reshetikhin-Turaev invariants
Abstract
The Witten-Reshetikhin-Turaev invariant Z(X,K) of a closed oriented three-manifold X containing a knot K, was originally introduced by Witten in order to extend the Jones polynomial of knots in terms of Chern-Simons theory. Classically, the Jones polynomial is defined for a knot inside the three-sphere in a combinatorial manner. In Witten's approach, the Jones polynomial J(K) emerge as the expectation value of a certain observable in Chern-Simons theory, which makes sense when K is embedded in any closed oriented three-manifold X. Moreover; he proposed that these invariants should be extendable to so-called topological quantum field theories (TQFT's). There is a catch; Witten's ideas relied on Feynman path integrals, which made them unrigorous from a mathematical point of view. However; TQFT's extending the Jones polynomial were subsequently constructed mathematically through combinatorial means by Reshetikhin and Turaev. In this talk, I shall expand slightly on the historical motivation of WRT invariants, introduce the formalism of TQFT's, and present some of the open problems concerning WRT invariants. The guiding motif will be the analogy between TQFT and quantum field theory.
Computation of optimal transport and related hedging problems via penalization and neural networks
Abstract
We present a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, and bounds on the distribution of a sum of dependent random variables. As an application we focus on the problem of risk aggregation under model uncertainty. The talk is based on joint work with Stephan Eckstein and Mathias Pohl.
Understanding extreme wave events
Abstract
Statements in media about record wave heights being measured are more and more common, the latest being about a record wave of almost 24m in the Southern Ocean on 9 May 2018. We will review some of these wave measurements and the various techniques to measure waves. Then we will explain the various mechanisms that can produce extreme waves both in wave tanks and in the ocean. We will conclude by providing the mechanism that, we believe, explains some of the famous extreme waves. Note that extreme waves are not necessarily rogue waves and that rogue waves are not necessarily extreme waves.
Optimization, equilibria, energy and risk
Abstract
In the past few decades, power grids across the world have become dependent on markets that aim to efficiently match supply with demand at all times via a variety of pricing and auction mechanisms. These markets are based on models that capture interactions between producers, transmission and consumers. Energy producers typically maximize profits by optimally allocating and scheduling resources over time. A dynamic equilibrium aims to determine prices and dispatches that can be transmitted over the electricity grid to satisfy evolving consumer requirements for energy at different locations and times. Computation allows large scale practical implementations of socially optimal models to be solved as part of the market operation, and regulations can be imposed that aim to ensure competitive behaviour of market participants.
Questions remain that will be outlined in this presentation.
Firstly, the recent explosion in the use of renewable supply such as wind, solar and hydro has led to increased volatility in this system. We demonstrate how risk can impose significant costs on the system that are not modeled in the context of socially optimal power system markets and highlight the use of contracts to reduce or recover these costs. We also outline how battery storage can be used as an effective hedging instrument.
Secondly, how do we guarantee continued operation in rarely occuring situations and when failures occur and how do we price this robustness?
Thirdly, how do we guarantee appropriate participant behaviour? Specifically, is it possible for participants to develop strategies that move the system to operating points that are not socially optimal?
Fourthly, how do we ensure enough transmission (and generator) capacity in the long term, and how do we recover the costs of this enhanced infrastructure?
The Cauchy problem in General Relativity and Kaluza Klein spacetimes
Abstract
In this talk I will start with a brief overview of the Cauchy problem for the Einstein equations of general relativity, and in particular the nonlinear stability of the trivial Minkowski solution in wave gauge as shown by Lindblad and Rodnianski. I will then discuss the Kaluza Klein spacetime of the form $R^{1+3} \times K$ where $K$ is the $n-$torus with the flat metric. An interesting question to ask is whether this solution to the Einstein equations, viewed as an initial value problem, is stable to small perturbations of the initial data. Motivated by this problem, I will outline how the proof of stability in a restricted class of perturbations in fact follows from the work of Lindblad and Rodnianski, and discuss the physical justification behind this restriction.
Growth in Virtually Abelian Groups
Abstract
Elements of a finitely generated group have a natural notion of length: namely the length of a shortest word over the generators that represents the element. This allows us to study the growth of such groups by considering the size of spheres with increasing radii. One current area of interest is the rationality or otherwise of the formal power series whose coefficients are the sphere sizes. I will describe a combinatorial way to study this series for the class of virtually abelian groups, introduced by Benson in the 1980s, and then outline its applications to other types of growth series.
10:30
Combinatorial Theory Seminar - One-Day Meeting
Some questions on class field theory and model theory
Abstract
This lecture will give a brief review of the theory of non-abelian reciprocity maps and their applications to Diophantine geometry, and pose some questions for model-theorists.
A Recursive Formula for Log Gromov-Witten Invariants
Abstract
Given a smooth variety X containing a smooth divisor Y, the relative Gromov-Witten invariants of (X,Y) are defined as certain counts of algebraic curves in X with specified orders of tangency to Y. Their intrinsic interest aside, they are an important part of any Gromov-Witten theorist’s toolkit, thanks to their role in the celebrated “degeneration formula.” In recent years these invariants have been significantly generalised, using techniques in logarithmic geometry. The resulting “log Gromov-Witten invariants” are defined for a large class of targets, and in particular give a rigorous definition of relative invariants for (X,D) where D is a normal crossings divisor. Besides being more general, these numbers are intimately related to constructions in Mirror Symmetry, via the Gross-Siebert program. In this talk, we will describe a recursive formula for computing the invariants of (X,D) in genus zero. The result relies on a comparison theorem which expresses the log Gromov-Witten invariants as classical (i.e. non log-geometric) objects.
Proximal methods for Mean Field Games with local couplings
Abstract
In this talk we address the numerical approximation of Mean Field Games with local couplings. For finite difference discretizations of the Mean Field Game system, we follow a variational approach, proving that the schemes can be obtained as the optimality system of suitably defined optimization problems. In order to prove the existence of solutions of the scheme with a variational argument, the monotonicity of the coupling term is not used, which allow us to recover general existence results. Next, assuming next that the coupling term is monotone, the variational problem is cast as a convex optimization problem for which we study and compare several proximal type methods. These algorithms have several interesting features, such as global convergence and stability with respect to the viscosity parameter. We conclude by presenting numerical experiments assessing the performance of the proposed methods. In collaboration with L. Briceno-Arias (Valparaiso, CL) and F. J. Silva (Limoges, FR).
g-algebras and the representations of their invariant subrings.
Abstract
Let $\mathfrak g$ be a semisimple Lie algebra. A $\mathfrak g$-algebra is an associative algebra $R$ on which $\mathfrak g$ acts by derivations. There are several significant examples. Let $V$ a finite dimensional $\mathfrak g$ module and take $R=\mathrm{End} V$ or $R=D(V)$ being the ring of derivations on $V$ . Again take $R=U(\mathfrak g)$. In all these cases $ S=U(\mathfrak g)\otimes R$ is again a $\mathfrak g$-algebra. Finally let $T$ denote the subalgebra of invariants of $S$.
For the first choice of $R$ above the representation theory of $T$ can be rather explicitly described in terms of Kazhdan-Lusztig polynomials. In the second case the simple $T$ modules can be described in terms of the simple $D(V)$ modules. In the third case it is shown that all simple $T$ modules are finite dimensional, despite the fact that $T$ is not a PI ring, except for the case $\mathfrak g =\mathfrak {sl}(2)$.
Storage optimal semidefinite programming
Abstract
Semidefinite convex optimization problems often have low-rank solutions that can be represented with O(p)-storage. However, semidefinite programming methods require us to store the matrix decision variable with size O(p^2), which prevents the application of virtually all convex methods at large scale.
Indeed, storage, not arithmetic computation, is now the obstacle that prevents us from solving large- scale optimization problems. A grand challenge in contemporary optimization is therefore to design storage-optimal algorithms that provably and reliably solve large-scale optimization problems in key scientific and engineering applications. An algorithm is called storage optimal if its working storage is within a constant factor of the memory required to specify a generic problem instance and its solution.
So far, convex methods have completely failed to satisfy storage optimality. As a result, the literature has largely focused on storage optimal non-convex methods to obtain numerical solutions. Unfortunately, these algorithms have been shown to be provably correct only under unverifiable and unrealistic statistical assumptions on the problem template. They can also sacrifice the key benefits of convexity, as they do not use key convex geometric properties in their cost functions.
To this end, my talk introduces a new convex optimization algebra to obtain numerical solutions to semidefinite programs with a low-rank matrix streaming model. This streaming model provides us an opportunity to integrate sketching as a new tool for developing storage optimal convex optimization methods that go beyond semidefinite programming to more general convex templates. The resulting algorithms are expected to achieve unparalleled results for scalable matrix optimization problems in signal processing, machine learning, and computer science.
Cascade-Recovery Dynamics on Complex Networks
Abstract
Cascading phenomena are prevalent in natural and social-technical complex networks. We study the persistent cascade-recovery dynamics on random networks which are robust against small trigger but may collapse for larger one. It is observed that depending on the relative intensity of triggering and recovery, the network belongs one of the two dynamical phases: collapsing or active phase. We devise an analytical framework which characterizes not only the critical behaviour but also the temporal evolution of network activity in both phases. Results from agent-based simulations show good agreement with theoretical calculations. This work is an important attempt in understanding networked systems gradually evolving into a state of critical transition, with many potential applications.
Towards an M5-brane model: A 6d superconformal field theory
Abstract
I will discuss a classical six-dimensional superconformal field theory containing a non-abelian tensor multiplet which we recently constructed in arXiv:1712.06623.
This theory satisfies many of the properties of the mysterious (2,0)-theory: non-abelian 2-form potentials, ADE-type gauge structure, reduction to Yang-Mills theory and reduction to M2-brane models. There are still some crucial differences to the (2,0)-theory, but our action seems to be a key stepping stone towards a potential classical formulation of the (2,0)-theory.
I will review in detail the underlying mathematics of categorified gauge algebras and categorified connections, which make our constructions possible.
Recent advances in analysis of critical points of Landau-de Gennes energy in 2D and 3D
Abstract
In the first part of this talk the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general k-radial symmetric boundary conditions, will be analysed. It will be shown that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2. Analysis of the associated harmonic map type problem arising in the limit of small elastic constants allows to identify three types of radial profiles: with two, three or full five components. In the second part of the talk different paths for emergency of non-radially symmetric solutions and their analytical structure in 2D as well as 3D cases will be discussed. These results is a joint work with Jonathan Robbins, Valery Slastikov and Arghir Zarnescu.
Invariants of the signature
Abstract
Based on classical invariant theory, I describe a complete set of elements of the signature that is invariant to the general linear group, rotations or permutations.
A geometric interpretation of some of these invariants will be given.
Joint work with Jeremy Reizenstein (Warwick).
15:45
Unbounded rank expanders, property (T), and upgrading
Abstract
The problem of "unbounded rank expanders" asks
whether we can endow a system of generators with a sequence of
special linear groups whose degrees tend to infinity over quotient rings
of Z such that the resulting Cayley graphs form an expander family.
Kassabov answered this question in the affirmative. Furthermore, the
completely satisfactory solution to this question was given by
Ershov and Jaikin--Zapirain (Invent. Math., 2010); they proved
Kazhdan's property (T) for elementary groups over non-commutative
rings. (T) is equivalent to the fixed point property with respect to
actions on Hilbert spaces by isometries.
We provide a new framework to "upgrade" relative fixed point
properties for small subgroups to the fixed point property for the
whole group. It is inspired by work of Shalom (ICM, 2006). Our
main criterion is stated only in terms of intrinsic group structure
(but *without* employing any form of bounded generation).
This, in particular, supplies a simpler (but not quantitative)
alternative proof of the aforementioned result of Ershov and
Jaikin--Zapirain.
If time permits, we will discuss other applications of our result.
Algebraic flow
Abstract
We present an algebraic formulation for the flow of a differential equation driven by a path in a Lie group. The formulation is motivated by formal differential equations considered by Chen.
Higher rank local systems and topology of monotone Lagrangians in projective space
Abstract
Lagrangian Floer cohomology can be enriched by using local coefficients to record some homotopy data about the boundaries of the holomorphic disks counted by the theory. In this talk I will explain how one can do this under the monotonicity assumption and when the Lagrangians are equipped with local systems of rank higher than one. The presence of holomorphic discs of Maslov index 2 poses a potential obstruction to such an extension. However, for an appropriate choice of local systems the obstruction might vanish and, if not,
one can always restrict to some natural unobstructed subcomplexes. I will showcase these constructions with some explicit calculations for the Chiang Lagrangian in CP^3 showing that it cannot be disjoined from RP^3 by a Hamiltonian isotopy, answering a question of Evans-Lekili. Time permitting, I will also discuss some work-in-progress on the topology of monotone Lagrangians in CP^3, part of which follows from more general joint work with Jack Smith on the topology of monotone Lagrangians of maximal Maslov number in
projective spaces.
12:45
Exotic Rational Conformal Field Theories and the Modular Bootstrap
Abstract
I will summarise old and recent developments on the classification and solution of Rational Conformal Field Theories in 2 dimensions using the method of Modular Differential Equations. Novel and exotic theories are found with small numbers of characters and simple fusion rules, one of these being the Baby Monster CFT. Correlation functions for many of these theories can be computed using crossing-symmetric differential equations.
On the Birational Classification of Algebraic Varieties
Abstract
Details to follow
Modelling Steaming Surtseyan Bombs
Abstract
A Surstseyan eruption is a particular kind of volcanic eruption which involves the bulk interaction of water and hot magma. Surtsey Island was born during such an eruption process in the 1940s. I will talk about mathematical modelling of the flashing of water to steam inside a hot erupted lava ball called a Surtseyan bomb. The overall motivation is to understand what determines whether such a bomb will fragment or just quietly fizzle out...
Partial differential equations model transient changes in temperature and pressure in Surtseyan ejecta. We have used a highly simplified approach to the temperature behaviour, to separate temperature from pressure. The resulting pressure diffusion equation was solved numerically and asymptotically to derive a single parametric condition for rupture of ejecta. We found that provided the permeability of the magma ball is relatively large, steam escapes rapidly enough to relieve the high pressure developed at the flashing front, so that rupture does not occur. This rupture criterion is consistent with existing field estimates of the permeability of intact Surtseyan bombs, fizzlers that have survived.
I describe an improvement of this model that allows for the fact that pressure and temperature are in fact coupled, and that the process is not adiabatic. A more systematic reduction of the resulting coupled nonlinear partial differential equations that arise from mass, momentum and energy conservation is described. We adapt an energy equation presented in G.K. Batchelor's book {\em An Introduction to Fluid Dynamics} that allows for pressure-work. This is work in progress. Work done with Emma Greenbank, Ian Schipper and Andrew Fowler
From medical scans to 3D printed body parts - the challenges of segmentation
A probabilistic approach to non-parametric local volatility
Abstract
The local volatility model is a celebrated model widely used for pricing and hedging financial derivatives. While the model’s main appeal is its capability of reproducing any given surface of observed option prices—it provides a perfect fit—the essential component of the model is a latent function which can only be unambiguously determined in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimates as result. We seek to look at the calibration problem in a probabilistic framework with a nonparametric approach based on Gaussian process priors. This immediately gives a way of encoding prior believes about the local volatility function, and a hypothesis model which is highly flexible whilst being prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate, we seek to draw posterior inference on the distribution over local volatility to better understand the uncertainty attached with the calibration. Further, we seek to understand dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this gives us means of inferring predictive distributions not only locally, but also for entire surfaces forward in time.
12:00
Which neural codes are convex?
Abstract
This talk focuses on algebraic and combinatorial-topological problems motivated by neuroscience. Neural codes allow the brain to represent, process, and store information about the world. Combinatorial codes, comprised of binary patterns of neural activity, encode information via the collective behavior of populations of neurons. A code is called convex if its codewords correspond to regions defined by an arrangement of convex open sets in Euclidean space. Convex codes have been observed experimentally in many brain areas, including sensory cortices and the hippocampus,where neurons exhibit convex receptive fields. What makes a neural code convex? That is, how can we tell from the intrinsic structure of a code if there exists a corresponding arrangement of convex open sets?
This talk describes how to use tools from combinatorics and commutative algebra to uncover a variety of signatures of convex and non-convex codes.
This talk is based on joint works with Aaron Chen and Florian Frick, and with Carina Curto, Elizabeth Gross, Jack Jeffries, Katie Morrison, Mohamed Omar, Zvi Rosen, and Nora Youngs.
Mathematical modelling in infectious disease epidemiology
Michael Atiyah - Numbers are Serious but they are also Fun
Abstract
Archimedes, who famously jumped out of his bath shouting "Eureka", also invented $\pi$.
Euler invented $e$ and had fun with his formula $e^{2\pi i} = 1$
The world is full of important numbers waiting to be invented. Why not have a go ?
Michael Atiyah is one of the world's foremost mathematicians and a pivotal figure in twentieth and twenty-first century mathematics. His lecture will be followed by an interview with Sir John Ball, Sedleian Professor of Natural Philosophy here in Oxford where Michael will talk about his lecture, his work and his life as a mathematician.
Please email @email to register.
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
The number of quartic D4-fields with monogenic cubic resolvent ordered by conductor
Abstract
It is an old problem in number theory to count number fields of a fixed degree and having a fixed Galois group for its Galois closure, ordered by their absolute discriminant, say. In this talk, I shall discuss some background of this problem, and then report a recent work with Stanley Xiao. In our paper, we considered quartic $D_4$-fields whose ring of integers has a certain nice algebraic property, and we counted such fields by their conductor.
16:00
Vertex algebras and categorical Kirwan surjectivity
Abstract
The Grojnowski-Nakajima theorem states that the direct sum of the homologies of the Hilbert schemes on n points on an algebraic surface is an irreducible highest weight representation of an infinite-dimensional Heisenberg superalgebra. We present an idea to rederive the Grojnowski-Nakajima theorem using Halpern-Leistner's categorical Kirwan surjectivity theorem and Joyce's theorem that the homology of a moduli space of sheaves is a vertex algebra. We compute the homology of the moduli stack of perfect complexes of coherent sheaves on a smooth quasi-projective variety X, identify it as a (modified) lattice vertex algebra on the Lawson homology of X, and explain its relevance to the aforementioned problem.
Accounting for the Epps Effect: Realized Covariation, Cointegration and Common Factors
Abstract
High-frequency realized variance approaches offer great promise for
estimating asset prices’ covariation, but encounter difficulties
connected to the Epps effect. This paper models the Epps effect in a
stochastic volatility setting. It adds dependent noise to a factor
representation of prices. The noise both offsets covariation and
describes plausible lags in information transmission. Non-synchronous
trading, another recognized source of the effect, is not required. A
resulting estimator of correlations and betas performs well on LSE
mid-quote data, lending empirical credence to the approach.
Peeling and the growth of blisters
Abstract
The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between flow and elastic deformation on a range of length scales.
I will illustrate the possibilities by considering theoretically and experimentally the injection and spread of viscous fluid beneath a flexible elastic lid; the injected fluid forms a blister, which spreads by peeling the lid away at the perimeter of the blister. Among the many questions to be considered are the mechanisms for relieving the elastic analogue of the contact-line problem, whether peeling is "by bending" or "by pulling", the stability of the peeling front, and the effects of a capillary meniscus when peeling is by air injection. The result is a plethora of dynamical regimes and asymptotic scaling laws.
Isogeometric multiresolution shape and topology optimisation
Abstract
Advances in manufacturing technologies, most prominently in additive manufacturing or 3d printing, are making it possible to fabricate highly optimised products with increasing geometric and hierarchical complexity. This talk will introduce our ongoing work on design optimisation that combines CAD-compatible geometry representations, multiresolution geometry processing techniques and immersed finite elements with classical shape and topology calculus. As example applications,the shape optimisation of mechanical structures and electromechanical components, and the topology optimisation of lattice-skin structures will be discussed.
Thompson's Group
Abstract
Thompson's group F is a group of homeomorphisms of the unit interval which exhibits a strange mix of properties; on the one hand it has some self-similarity type properties one might expect of a really big group, but on the other hand it is finitely presented. I will give a proof of finite generation by expressing elements as pairs of binary trees.
On some connections between domain geometry and blow-up type in a nonlinear heat equation
Abstract
The Fujita equation $u_{t}=\Delta u+u^{p}$, $p>1$, has been a canonical blow-up model for more than half a century. A great deal is known about the singularity formation under a variety of conditions. In particular we know that blow-up behaviour falls broadly into two categories, namely Type I and Type II. The former is generic and stable while the latter is rare and highly unstable. One of the central results in the field states that in the Sobolev subcritical regime, $1<p<\frac{n+2}{n-2}$, $n\geq 3$, only type I is possible whenever the domain is \emph{convex} in $\mathbb{R}^n$. Despite considerable effort the requirement of convexity has not been lifted and it is not clear whether this is an artefact of the methodology or whether the geometry of the domain may actually affect the blow-up type. In my talk I will discuss how the question of the blow-up type for non-convex domains is intimately related to the validity of some Li-Yau-Hamilton inequalities.
15:00
Challenges of End-to-End Encryption in Facebook Messenger
Abstract
In 2016, Facebook added an optional end-to-end (E2E) encryption feature called Secret Conversations to Messenger. This was challenging to design, as many of Messenger's key properties and features don't fit the typical model of E2E apps. Additionally, Messenger is already one of the world's most popular messaging apps, supporting nearly a billion people across a variety of technical and cultural environments. Because of this, Messenger's deployment of E2E encryption provides attendees with a valuable case study on how to build usable, secure products.
We will discuss the core properties of a typical E2E app, the core features of Messenger, the distance between the two, and the approach we took to close the gap. We'll examine how minimizing the distance shaped the current E2E experience within Messenger. Through discussion of the key decisions in this process, we'll address the implications for alternative designs with real world comparisons where they exist.
Although Secret Conversations in Messenger use off-the-shelf Signal Protocol for message encryption, Facebook also wanted to ensure a safe communication channel for community members who may be victims of online abuse. To this end, we created a way for people to report secret conversations that violate our Community Standards, without breaking any E2E guarantees for other messages.
Developing a reporting protocol created an interesting challenge: the potential of fake reports with no intermediary to invalidate them. To pre-empt the possibility of Bob forging a report to incriminate Alice, we added a method that uses two HMACs - one added by the sender and one by Facebook - to “cryptographically frank” messages as we forward them from one party to the other (physical mail uses a similar franking). This technique ensures similar confidence that a report is genuine as we have for messages stored in plaintext on our servers. Additionally, the frank is only verifiable by Facebook after receiving a report from the recipient, thus preventing a third party from using it as evidence against the sender.
We hope that this talk will provide an insight into the intricacies of deploying security features at scale, and the additional considerations necessary when developing an existing product.
Non-archimedean integrals as limits of complex integrals.
Abstract
Several works (by Kontsevich, Soibelman, Berkovich, Nicaise, Boucksom, Jonsson...) have shown that the limit behavior of a one-parameter family $(X_t)$ of complex algebraic varieties can often be described using the associated Berkovich t-adic analytic space $X^b$. In a work in progress with E. Hrushovski and F. Loeser, we provide a new instance of this general phenomenon. Suppose we are given for every t an $(n,n)$-form $ω_t$ on $X_t$ (for n= dim X). Then under some assumptions on the formula that describes $ω_t$, the family $(ω_t)$ has a "limit" ω, which is a real valued (n,n)-form in the sense of Chambert-Loir and myself on the Berkovich space $X^b$, and the integral of $ω_t$ on $X_t$ tends to the integral of ω on $X^b$.
In this talk I will first make some reminders about Berkovich spaces and (n,n)-forms in this setting, and then discuss the above result.
In fact, as I will explain, it is more convenient to formulate it with $(X_t)$ seen as a single algebraic variety over a non-standard model *C of C and (ω_t) as a (n,n) differential form on this variety. The field *C also carries a t-adic real valuation which makes it a model of ACVF (and enables to do Berkovich geometry on it), and our proof uses repeatedly RCF and ACVF theories.
Euclid's Elements of Geometry in Early Modern Britain
Abstract
Part of the series 'What do historians of mathematics do?'
Both as a canonical mathematical text and as a representative of ancient thought, Euclid's Elements of Geometry has been a subject of study since its creation c. 300 BCE. It has been read as a practical and a theoretical text; it has been studied for its philosophical ramifications and for its perceived potential to inculcate logical thought. For the historian, it is where the history of mathematics meets the history of ideas; where the history of the book meets the history of practice. The study of the Elements enjoyed a particular resurgence during the Early Modern period, when around 200 editions of the text appeared between 1482 and 1700. Depending on their theoretical and practical functions, they ranged between elaborate folios and pocket-size compendia, and were widely studied by scholars, natural philosophers, mathematical practitioners, and schoolchildren alike.
In this talk, I will present some of the preliminary results of the research we have been conducting for the AHRC-funded project based at the History Faculty 'Reading Euclid: Euclid's Elements of Geometry in Early Modern Britain', paying particular attention to how the books were printed, collected, and annotated. I will concentrate on our methodologies and introduce the database we have been building of all the early modern copies of the text in the British Isles, as well as the 'catalogue of book catalogues'.
Solving the Schrödinger equation with a time-dependent potential
Abstract
The Schrödinger equation with a time-dependent potential occurs in a wide range of applications in theoretical chemistry, quantum physics and quantum computing. In this talk I will discuss a variety of Magnus expansion based schemes that have been found to be highly effective for numerically solving these equations since the pioneering work of Tal Ezer and Kosloff in the early 90s. Recent developments in the field focus on approximation of the exponential of the Magnus expansion via exponential splittings including some asymptotic splittings and commutator-free splittings that are designed specifically for this task.
I will also present a very recently developed methodology for the case of laser-matter interaction. This methodology allows us to extend any fourth-order scheme for Schrödinger equation with time-independent potential to a fourth-order method for Schrödinger equation with laser potential with little to no additional cost. These fourth-order methods improve upon many leading schemes of order six due to their low costs and small error constants.
14:30
The Erdos Matching Conjecture and related questions
Abstract
Consider a family of k-element subsets of an n-element set, and assume that the family does not contain s pairwise disjoint sets. The well-known Erdos Matching Conjecture suggests the maximum size of such a family. Finding the maximum is trivial for n<(s+1)k and is relatively easy for n large in comparison to s,k. There was a splash of activity around the conjecture in the recent years, and, as far as the original question is concerned, the best result is due to Peter Frankl, who verified the conjecture for all n>2sk. In this work, we improve the bound of Frankl for any k and large enough s. We also discuss the connection of the problem to an old question on deviations of sums of random variables going back to the work of Hoeffding and Shrikhande.
Perfectly matched layers: how to stop making (unwanted) waves
Abstract
Many problems that involve the propagation of time-harmonic waves are naturally posed in unbounded domains. For instance, a common problem in the are a of acoustic scattering is the determination of the sound field that is generated when an incoming time-harmonic wave (which is assumed to arrive ``from infinity'') impinges onto a solid body (the scatterer). The boundary
conditions to be applied on the surface of the scatterer (most often of Dirichlet, Neumann or Robin type) tend to be easy to enforce in most numerical solution schemes. Conversely, the imposition of a suitable decay condition (typically a variant of the Sommerfeld radiation condition), which is required to ensure the well-posedness of the solution, is considerably more involved. As a result, many numerical schemes generate spurious reflections from the outer boundary of the finite computational domain.
Perfectly matched layers (PMLs) are in this context a versatile alternative to the usage of classical approaches such as employing absorbing boundary conditions or Dirichlet-to-Neumann mappings, but unfortunately most PML formulations contain adjustable parameters which have to be optimised to give the best possible performance for a particular problem. In this talk I will present a parameter-free PML formulation for the case of the two-dimensional Helmholtz equation. The performance of the proposed method is demonstrated via extensive numerical experiments, involving domains with smooth and polygonal boundaries, different solution types (smooth and singular, planar and non-planar waves), and a wide range of wavenumbers (R. Cimpeanu, A. Martinsson and M.Heil, J. Comp. Phys., 296, 329-347 (2015)). Possible extensions and generalisations will also be touched upon.
Complex singularities near the intersection of a free-surface and a rigid wall
Abstract
It is known that in steady-state potential flows, the separation of a gravity-driven free-surface from a solid exhibits a number of peculiar characteristics. For example, it can be shown that the fluid must separate from the body so as to form one of three possible in-fluid angles: (i) 180°, (ii) 120°, or (iii) an angle such that the surface is locally perpendicular to the direction of gravity. These necessary separation conditions were notably remarked by Dagan & Tulin (1972) in the context of ship hydrodynamics [J. Fluid Mech., 51(3) pp. 520-543], but they are of crucial importance in many potential flow applications. It is not particularly well understood why there is such a drastic change in the local separation behaviours when the global flow is altered. The question that motivates this work is the following: outside a formal balance-of-terms arguments, why must (i) through (iii) occur and furthermore, what is the connections between them?
In this work, we seek to explain the transitions between the three cases in terms of the singularity structure of the associated solutions once they are extended into the complex plane. A numerical scheme is presented for the analytic continuation of a vertical jet (or alternatively a rising bubble). It will be shown that the transition between the three cases can be predicted by observing the coalescence of singularities as the speed of the jet is modified. A scaling law is derived for the coalescence rate of singularities.
Structural and functional redundancy in biological networks
Abstract
Several scholars of evolutionary biology have suggested that functional redundancy (also known as "biological degener-
acy") is important for robustness of biological networks. Structural redundancy indicates the existence of structurally
similar subsystems that can perform the same function. Functional redundancy indicates the existence of structurally
di erent subsystems that can perform the same function. For networks with Ornstein--Uhlenbeck dynamics, Tononi et al.
[Proc. Natl. Acad. Sci. U.S.A. 96, 3257{3262 (1999)] proposed measures of structural and functional redundancy that are
based on mutual information between subnetworks. For a network of n vertices, an exact computation of these quantities
requires O(n!) time. We derive expansions for these measures that one can compute in O(n3) time. We use the expan-
sions to compare the contributions of di erent types of motifs to a network's functional redundancy.
Six-dimensional S-matrices from Rational Maps
Abstract
In this talk, we will discuss some recent progress on the study of six-dimensional S-matrices as well as their applications. Six-dimensional theories we are interested include the world-volume theories of single probe M5-brane and D5-brane, as well as 6D super Yang-Mills and supergravity. We will present twistor-string-like formulas for all these theories, analogue to that of Witten’s twistor string formulation for 4D N=4 SYM.
As the applications, from the 6D results we also deduce new formulas for scattering amplitudes of theories in lower dimensions, such as SYM and supergravity in five dimensions, and 4D N=4 SYM on the Columbo branch.
17:00
G-actions in quantum mechanics and Koszul duality
Abstract
I will discuss the quantum-field-theory origins of a classic result of Goresky-Kottwitz-MacPherson concerning the Koszul duality between the homology of G and the G-equivariant cohomology of a point. The physical narrative starts from an analysis of supersymmetric quantum mechanics with G symmetry, and leads naturally to a definition of the category of boundary conditions in two-dimensional topological gauge theory, which might be called the "G-equivariant Fukaya category of a point." This simple example illustrates a more general phenomenon (also appearing in C. Teleman's work in recent years) that pure gauge theory in d dimensions seems to control the structure of G-actions in (d-1)-dimensional QFT. This is part of joint work with C. Beem, D. Ben Zvi, M. Bullimore, and A. Neitzke.