O-minimality and Cox rings over number fields for Manin’s conjecture
Abstract
Manin’s conjecture predicts the asymptotic behavior of the number of rational points of bounded height on Fano varieties over number fields. We prove this conjecture for a family of nonsplit singular quartic del Pezzo surfaces over arbitrary number fields. For the proof, we parameterize the rational points on such a del Pezzo surface by integral points on a nonuniversal torsor (which is determined explicitly using a Cox ring of a certain type), and we count them using a result of Barroero-Widmer on lattice points in o-minimal structures. This is joint work in progress with Marta Pieropan.
16:00
A primer on perverse sheaves
Abstract
This talk will be a general introduction to perverse sheaves and their applications to the study of algebraic varieties, with a view towards enumerative geometry. It is aimed at non-experts.
We will start by considering constructible sheaves and local systems, and how they relate to the notion of stratification: this offers some insight in the relationship with intersection cohomology, which perverse sheaves generalise in a precise sense.
We will then introduce some technical notions, like t-structures, perversities, and intermediate extensions, in order to define perverse sheaves and explore their properties.
Time permitting, we will consider the relevant example of nearby and vanishing cycle functors associated with a critical locus, their relationship with the (hyper)-cohomology of the Milnor fibre and how this is exploited to define refined enumerative invariants in Donaldson-Thomas theory.
Machine Learning in Finance
Abstract
We present several instances of applications of machine
learning technologies in mathematical Finance including pricing,
hedging, calibration and filtering problems. We try to show that
regularity theory of the involved equations plays a crucial role
in designing such algorithms.
(based on joint works with Hans Buehler, Christa Cuchiero, Lukas
Gonon, Wahid Khosrawi-Sardroudi, Ben Wood)
Flagellar motility and metaboly in Euglena gracilis: lessons on locomotion and shape control from a unicellular protist
Abstract
Locomotion strategies employed by unicellular organism are a rich source of inspiration for studying mechanisms for shape control. They are particularly interesting because they are invisible to the naked eye, and offer surprising new solutions to the question of how shape can be controlled.
In recent years, we have studied locomotion and shape control in Euglena gracilis. This unicellular protist is particularly intriguing because it can adopt different motility strategies: swimming by flagellar propulsion, or crawling thanks to large amplitude shape changes of the whole body (a behavior known as metaboly). We will survey our most recent findings within this stream of research.
Applied Random Matrix Theory
Abstract
Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. Therefore, it is desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that balance these criteria. This talk offers an invitation to the field of matrix concentration inequalities and their applications.
The l1-homology of one-relator groups
Abstract
We will study the l1-homology of the 2-class in one relator groups. We will see that there are many qualitative and quantitive similarities between the l1-norm of the top dimensional class and the stable commutator length of the defining relation. As an application we construct manifolds with small simplicial volume.
This work in progress is joint with Clara Loeh.
Metric aspects in topology
Abstract
Every topological space is metrisable once the symmetry axiom is abandoned and the codomain of the metric is allowed to take values in a suitable structure tailored to fit the topology (and every completely regular space is similarly metrisable while retaining symmetry). This result was popularised in 1988 by Kopperman, who used value semigroups as the codomain for the metric, and restated in 1997 by Flagg, using value quantales. In categorical terms, each of these constructions extends to an equivalence of categories between the category Top and a category of all L-valued metric spaces (where L ranges over either value semigroups or value quantales) and the classical \epsilon-\delta notion of continuous mappings. Thus, there are (at least) two metric formalisms for topology, raising the questions: 1) is any of the two actually useful for doing topology? and 2) are the two formalisms equally powerful for the purposes of topology? After reviewing Flagg's machinery I will attempt to answer the former affirmatively and the latter negatively. In more detail, the two approaches are equipotent when it comes to point-to-point topological consideration, but only Flagg's formalism captures 'higher order' topological aspects correctly, however at a price; there is no notion of product of value quantales. En route to establishing Flagg's formalism as convenient, it will be shown that both fine and coarse variants of homology and homotopy arise as left and right Kan extensions of genuinely metrically constructed functors, and a topologically relevant notion of tensor product of value quantales, a surrogate for the non-existent products, will be described.
Applied mathematics in Czechoslovakia between the two world wars
Abstract
The Czech lands were the most industrial part of the Austrian-Hungarian monarchy, broken up at the end of the WW1. As such, Czechoslovakia inherited developed industry supported by developed system of tertiary education, and Czech and German universities and technical universities, where the first chairs for applied mathematics were set up. The close cooperation with the Skoda company led to the establishment of joint research institutes in applied mathematics and spectroscopy in 1929 (1934 resp.).
The development of industry was followed by a gradual introduction of social insurance, which should have helped to settle social contracts, fight with pauperism and prevent strikes. Social insurance institutions set up mathematical departments responsible for mathematical and statistical modelling of the financial system in order to ensure its sustainability. During the 1920s and 1930s Czechoslovakia brought its system of social insurance up to date. This is connected with Emil Schoenbaum, internationally renowned expert on insurance (actuarial) mathematics, Professor of the Charles University and one of the directors of the General Institute of Pensions in Prague.
After the Nazi occupation in 1939, Czech industry was transformed to serve armament of the Wehrmacht and the social system helped the Nazis to introduce the carrot and stick policy to keep weapons production running up to early 1945. There was also strong personal discontinuity, as the Jews and political opponents either fled to exile or were brutally persecuted.
Recent results for C^r-parameterizations and diophantine applications
Abstract
Both in the real and in the p-adic case, I will talk about recent results about C^r-parameterizations and their diophantine applications. In both cases, the dependence on r of the number of parameterizing C^r maps plays a role. In the non-archimedean case, we get as an application new bounds for rational points of bounded height lying on algebraic varieties defined over finite fields, sharpening the bounds by Sedunova, and making them uniform in the finite field. In the real case, some results from joint work with Pila and Wilkie, and also beyond this work, will be presented,
in relation to several questions raised by Yomdin. The non-archimedean case is joint work with Forey and Loeser. The real case is joint work with Pila and Wilkie, continued by my PhD student S. Van Hille. Some work with Binyamini and Novikov in the non-archimedean context will also be mentioned. The relations with questions by Yomdin is joint work with Friedland and Yomdin.
Subriemannian metrics and the metrizability of parabolic geometries
Abstract
We present the linearized metrizability problem in the context of parabolic geometries and subriemannian geometry, generalizing the metrizability problem in projective geometry studied by R. Liouville in 1889. We give a general method for linearizability and a classification of all cases with irreducible defining distribution where this method applies. These tools lead to natural subriemannian metrics on generic distributions of interest in geometric control theory.
A dimensionality reduction technique for global optimisation
Abstract
(Joint work with Coralia Cartis) The problem of finding the most extreme value of a function, also known as global optimization, is a challenging task. The difficulty is associated with the exponential increase in the computational time for a linear increase in the dimension. This is known as the ``curse of dimensionality''. In this talk, we demonstrate that such challenges can be overcome for functions with low effective dimensionality --- functions which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations.
We propose the use of random subspace embeddings within a(ny) global minimisation algorithm, extending the approach in Wang et al. (2013). We introduce a new framework, called REGO (Random Embeddings for GO), which transforms the high-dimensional optimization problem into a low-dimensional one. In REGO, a new low-dimensional problem is formulated with bound constraints in the reduced space and solved with any GO solver. Using random matrix theory, we provide probabilistic bounds for the success of REGO, which indicate that this is dependent upon the dimension of the embedded subspace and the intrinsic dimension of the function, but independent of the ambient dimension. Numerical results demonstrate that high success rates can be achieved with only one embedding and that rates are for the most part invariant with respect to the ambient dimension of the problem.
14:30
Random graph coloring and the cavity method
Abstract
The last remaining open problem from Erdős and Rényi's original paper on random graphs is the following: for q at least 3, what is the largest d so that the random graph G(n,d/n) is q-colorable with high probability? A lot of interesting work in probabilistic combinatorics has gone into proving better and better bounds on this q-coloring threshold, but the full answer remains elusive. However, a non-rigorous method from the statistical physics of glasses - the cavity method - gives a precise prediction for the threshold. I will give an introduction to the cavity method, with random graph coloring as the running example, and describe recent progress in making parts of the method rigorous, emphasizing the role played by tools from extremal combinatorics. Based on joint work with Amin Coja-Oghlan, Florent Krzakala, and Lenka Zdeborová.
14:15
Decomposition spaces: theory and applications
Abstract
Decomposition (aka unital 2-Segal) spaces are simplicial ∞-groupoids with a certain exactness property: they take pushouts of active (end-point preserving) along inert (distance preserving) maps in the simplicial category Δ to pullbacks. They encode the information needed for an 'objective' generalisation of the notion of incidence (co)algebra of a poset, and motivating examples include the decomposition spaces for (derived) Hall algebras, the Connes-Kreimer algebra of trees and Schmitt's algebra of graphs. In this talk I will survey recent activity in this area, including some work in progress on a categorification of (Hopf) bialgebroids.
This is joint work with Imma Gálvez and Joachim Kock.
Scalable Least-Squares Minimisation for Bundle Adjustment Problems
Abstract
Structure from Motion (SfM) is a problem which asks: given photos of an object from different angles, can we reconstruct the object in 3D? This problem is important in computer vision, with applications including urban planning and autonomous navigation. A key part of SfM is bundle adjustment, where initial estimates of 3D points and camera locations are refined to match the images. This results in a high-dimensional nonlinear least-squares problem. In this talk, I will discuss how dimensionality reduction methods such as block coordinates and sketching can be used to improve solver scalability for bundle adjustment problems.
Pattern formations by large interaction forces in a nonlinear elliptic system
Abstract
For a nonlinear elliptic system coming from a nonlinear Schroedinger system, the interaction between components is represented by a symmetric matrix. The construction of possibly lower energy nontrivial solutions and the complete description of dependence of the solutions on the matrix are quite challenging tasks. Especially, we are interested in the case that intra-species interaction forces are fixed and inter-species forces are very large, that is, the diagonal part of the symmetric matric is fixed and the non-diagonal entries are very large. In this case, depending on the network between components by repulsive or attractive forces, several different types of patterns may appear. I would like to explain our recent studies on the problem with three components and touch a possible exploration on the general n-components problem.
15:45
Moduli stacks of vacua in geometric representation theory
Abstract
Topological field theories give rise to a wealth of algebraic structures, extending
the E_n algebra expressing the "topological OPE of local operators". We may interpret these algebraic structures as defining (slightly noncommutative) algebraic varieties and stacks, called moduli stacks of vacua, and relations among them. I will discuss some examples of these structures coming from the geometric Langlands program and their applications. Based on joint work with Andy Neitzke and Sam Gunningham.
An order/disorder perturbation of percolation model. A highroad to Cardy's formula.
Abstract
We will discuss the percolation model on the hexagonal grid. In 2001 S. Smirnov proved conformal invariance of its scaling limit through the use of a tricky auxiliary combinatorial construction.
We present a more conceptual approach, implying that the construction in question can be thought of as geometrically natural one.
The main goal of the talk is to make it believable that not all nice and useful objects in the field have been already found.
No background is required.
Gradient estimates and applications to nonlinear filtering
Abstract
We present sharp gradient estimates for the solution of the filtering equation and report on its applications in a high order cubature method for the nonlinear filtering problem.
The C^0 inextendibility of the Schwarzschild spacetime
Abstract
A C^k-extension of a smooth and connected Lorentzian manifold (M,g) is an isometric embedding of M into a proper subset of a connected Lorentzian manifold (N,h) of the same dimension, where the Lorentzian metric h is C^k regular. If no such extension exists, then we say that (M,g) is C^k-inextendible. The study of low-regularity inextendibility criteria for Lorentzian manifolds is motivated by the strong cosmic censorship conjecture in general relativity.
The Schwarzschild spacetime is manifestly inextendible as a Lorentzian manifold with a C^2 regular metric. In this talk I will describe how one
proves the stronger statement that the maximal analytic Schwarzschild spacetime is inextendible as a Lorentzian manifold with a continuous metric.
14:00
Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge
Abstract
In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. Holes die when a subset of their concepts appear in the same article, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We also show that authors' conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.
Comparing models with data using computational algebra
Abstract
In this talk I will discuss how computational algebraic geometry and topology can be useful for studying questions arising in systems biology. In particular I will focus on the problem of comparing models and data through the lens of computational algebraic geometry and statistics. I will provide concrete examples of biological signalling systems that are better understood with the developed methods.
Please note that this will be held at Tsuzuki Lecture Theatre, St Annes College, Oxford.
Please note that you will need to register for this event via https://www.eventbrite.co.uk/e/qbiox-colloquium-trinity-term-2018-ticke…
Fixation and spread of somatic mutations in adult human colonic epithelium
Abstract
Cancer causing mutations must become permanently fixed within tissues.
Please note that this will be held at Tsuzuki Lecture Theatre, St Annes College, Oxford.
Please note that you will need to register for this event via https://www.eventbrite.co.uk/e/qbiox-colloquium-trinity-term-2018-ticke…
QBIOX Colloquium
Abstract
1600-1645 - Philip Maini
1645-1705 - Edward Morrissey
1705-1725 - Heather Harrington
1725-1800 - Drinks and networking
The talks will be followed by a drinks reception.
Tickets can be obtained from https://www.eventbrite.co.uk/e/qbiox-colloquium-trinity-term-2018-ticke….
(As ever, tickets are not necessary, but they do help in judging catering requirements.)
PHILIP MAINI
Does mathematics have anything to do with biology? In this talk, I will review a number of interdisciplinary collaborations in which I have been involved over the years that have coupled mathematical modelling with experimental studies to try to advance our understanding of processes in biology and medicine. Examples will include somatic evolution in tumours, collective cell movement in epithelial sheets, cell invasion in neural crest, and pattern formation in slime mold. These are examples where verbal reasoning models are misleading and insufficient, while mathematical models can enhance our intuition.
EDWARD MORRISEY
Fixation and spread of somatic mutations in adult human colonic epithelium Cancer causing mutations must become permanently fixed within tissues. I will describe how, by visualizing somatic clones, we investigated the means and timing with which this occurs in the human colonic epithelium. Modelling the effects of gene mutation, stem cell dynamics and subsequent lateral expansion revealed that fixation required two sequential steps. First, one of around seven active stem cells residing within each colonic gland has to be mutated. Second, the mutated stem cell has to replace neighbours to populate the entire gland. This process takes many years because stem cell replacement is infrequent (around once every 9 months). Subsequent clonal expansion due to gland fission is also rare for neutral mutations. Pro-oncogenic mutations can subvert both stem cell replacement to accelerate fixation and clonal expansion by gland fission to achieve high mutant allele frequencies with age. The benchmarking and quantification of these behaviours allows the advantage associated with different gene specific mutations to be compared and ranked irrespective of the cellular mechanisms by which they are conferred. The age related mutational burden of advantaged mutations can be predicted on a gene-by-gene basis to identify windows of opportunity to affect fixation and limit spread.
HEATHER HARRINGTON
Comparing models with data using computational algebra In this talk I will discuss how computational algebraic geometry and topology can be useful for studying questions arising in systems biology. In particular I will focus on the problem of comparing models and data through the lens of computational algebraic geometry and statistics. I will provide concrete examples of biological signalling systems that are better understood with the developed methods.
Sir John Ball - Minimization, constraints and defects
Abstract
It is at first sight surprising that a minimizer of an integral of the calculus of variations may make the integrand infinite somewhere.
This talk will discuss some examples of this phenomenon, how it can be related to material defects, and related open questions from nonlinear elasticity and the theory of liquid crystals.
Does mathematics have anything to do with biology?
Abstract
In this talk, I will review a number of interdisciplinary collaborations in which I have been involved over the years that have coupled mathematical
modelling with experimental studies to try to advance our understanding of processes in biology and medicine. Examples will include somatic evolution in
tumours, collective cell movement in epithelial sheets, cell invasion in neural crest, and pattern formation in slime mold. These are examples where
verbal reasoning models are misleading and insufficient, while mathematical models can enhance our intuition.
Please note that this will be held at Tsuzuki Lecture Theatre, St Annes College, Oxford.
Please note that you will need to register for this event via https://www.eventbrite.co.uk/e/qbiox-colloquium-trinity-term-2018-ticke…
12:00
Analysis of contagion maps on a class of networks that are spatially embedded in a torus
Abstract
[[{"fid":"51386","view_mode":"default","fields":{"format":"default"},"type":"media","attributes":{"class":"file media-element file-default"},"link_text":"Barbara Mahler"}]]
11:00
Goursat rank 4 rigid local systems
Abstract
In the late 1880's Goursat investigated what we now call rigid local systems, classically described as linear differential equations without accessory parameters. In this talk I will discuss some arithmetic and geometric aspects of certain particular cases of Goursat's in rank four. For example, I will discuss what are likely to be all cases where the monodromy group is finite. This is joint work with Danylo Radchenko.
Systems and fluid dynamic modelling for bio-inspired propulsion
Arithmetic and Dynamics on Markoff-Hurwitz Varieties
Abstract
Markoff triples are integer solutions of the equation $x^2+y^2+z^2=3xyz$ which arose in Markoff's spectacular and fundamental work (1879) on diophantine approximation and has been henceforth ubiquitous in a tremendous variety of different fields in mathematics and beyond. After reviewing some of these, we will discuss joint work with Bourgain and Sarnak on the connectedness of the set of solutions of the Markoff equation modulo primes under the action of the group generated by Vieta involutions, showing, in particular, that for almost all primes the induced graph is connected. Similar results for composite moduli enable us to establish certain new arithmetical properties of Markoff numbers, for instance the fact that almost all of them are composite.
Time permitting, we will also discuss recent joint work with Magee and Ronan on the asymptotic formula for integer points on Markoff-Hurwitz surfaces $x_1^2+x_2^2 + \dots + x_n^2 = x_1 x_2 \dots x_n$, giving an interpretation for the exponent of growth in terms of certain conformal measure on the projective space.
16:00
From Equivariant Cohomology to Equivariant Symplectic Cohomology
Abstract
Equivariant cohomology is adapted from ordinary cohomology to better capture the action of a group on a topological space. In Floer theory, given an autonomous Hamiltonian, there is a natural action of the circle on 1-periodic flowlines given by time translation. Combining these two ideas leads to the definition of $S^1$-equivariant symplectic cohomology. In this talk, I will introduce these ideas and explain how they are related. I will not assume prior knowledge of Floer theory.
Large Deviations for McKean Vlasov Equations and Importance Sampling
Abstract
We discuss two Freidlin-Wentzell large deviation principles for McKean-Vlasov equations (MV-SDEs) in certain path space topologies. The equations have a drift of polynomial growth and an existence/uniqueness result is provided. We apply the Monte-Carlo methods for evaluating expectations of functionals of solutions to MV-SDE with drifts of super-linear growth. We assume that the MV-SDE is approximated in the standard manner by means of an interacting particle system and propose two importance sampling (IS) techniques to reduce the variance of the resulting Monte Carlo estimator. In the "complete measure change" approach, the IS measure change is applied simultaneously in the coefficients and in the expectation to be evaluated. In the "decoupling" approach we first estimate the law of the solution in a first set of simulations without measure change and then perform a second set of simulations under the importance sampling measure using the approximate solution law computed in the first step.
The Jellycopter: Stable Levitation using a standard magnetic stirrer
Abstract
In laboratories around the world, scientists use magnetic stirrers to mix solutions and dissolve powders. It is well known that at high drive rates the stir bar jumps around erratically with poor mixing, leading to its nick-name 'flea'. Investigating this behaviour, we discovered a state in which the flea levitates stably above the base of the vessel, supported by magnetic repulsion between flea and drive magnet. The vertical motion is oscillatory and the angular motion a superposition of rotation and oscillation. By solving the coupled vertical and angular equations of motion, we characterised the flea’s behaviour in terms of two dimensionless quantities: (i) the normalized drive speed and (ii) the ratio of magnetic to viscous forces. However, Earnshaw’s theorem states that levitation via any arrangement of static magnets is only possible with additional stabilising forces. In our system, we find that these forces arise from the flea’s oscillations which pump fluid radially outwards, and are only present for a narrow range of Reynold's numbers. At slower, creeping flow speeds, only viscous forces are present, whereas at higher speeds, the flow reverses direction and the flea is no longer stable. We also use both the levitating and non-levitating states to measure rheological properties of the system.
Multilevel and multifidelity approaches to UQ for PDEs
Abstract
We first consider multilevel Monte Carlo and stochastic collocation methods for determining statistical information about an output of interest that depends on the solution of a PDE with inputs that depend on random parameters. In our context, these methods connect a hierarchy of spatial grids to the amount of sampling done for a given grid, resulting in dramatic acceleration in the convergence of approximations. We then consider multifidelity methods for the same purpose which feature a variety of models that have different fidelities. For example, we could have coarser grid discretizations, reduced-order models, simplified physics, surrogates such as interpolants, and, in principle, even experimental data. No assumptions are made about the fidelity of the models relative to the “truth” model of interest so that unlike multilevel methods, there is no a priori model hierarchy available. However, our approach can still greatly accelerate the convergence of approximations.
12:00
On singular limits for the Vlasov-Poisson system
Abstract
The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains a fundamental open problem. In this talk we present the rigorous justification of the quasineutral limit for very small but rough perturbations of analytic initial data for the Vlasov-Poisson equation in dimensions 1, 2, and 3. Also, we discuss a recent result in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.
QI rigidity of commensurator subgroups
Abstract
One of the main themes in geometric group theory is Gromov's program to classify finitely generated groups up to quasi-isometry. We show that under certain situations, a quasi-isometry preserves commensurator subgroups. We will focus on the case where a finitely generated group G contains a coarse PD_n subgroup H such that G=Comm(H). Such groups can be thought of as coarse fibrations whose fibres are cosets of H; quasi-isometries of G coarsely preserve these fibres. This generalises work of Whyte and Mosher--Sageev--Whyte.
Locally Finite Trees and Topological Minor Relation
Abstract
Nash-Williams showed that the collection of locally finite trees under the topological minor relation results in a BQO. Naturally, two interesting questions arise:
1. What is the number \lambda of topological types of locally finite trees?
2. What are the possible sizes of an equivalence class of locally finite trees?
For (1), clearly, \omega_0 \leq \lambda \leq c and Matthiesen refined it to \omega_1 \leq \lambda \leq c. Thus, this question becomes non-trivial in the absence of the Continuum Hypothesis. In this paper we address both questions by showing - entirely within ZFC - that for a large collection of locally finite trees that includes those with countably many rays:
- \lambda = \omega_1, and
- the size of an equivalence class can only be either 1 or c.
Counting rational points and iterated polynomial equations
Abstract
In joint work with Gareths Boxall and Jones we prove a poly-logarithmic bound for the number of rational points on the graph of functions on the disc that exhibit a certain decay. I will present an application of this counting theorem to the arithmetic of dynamical systems. It concerns fields generated by the solutions of equations of the form $P^{\circ n}(z) = P^{\circ n}(y)$ for a polynomial $P$ of degree $D \geq 2$ where $y$ is a fixed algebraic number. The general goal is to show that the degree of such fields grows like a power of $D^n$.
Ordinary K3 surfaces over finite fields
Abstract
We give a description of the category of ordinary K3 surfaces over a finite field in terms of linear algebra data over Z. This gives an analogue for K3 surfaces of Deligne's description of the category of ordinary abelian varieties over a finite field, and refines earlier work by N.O. Nygaard and J.-D. Yu. Two important ingredients in the proof are integral p-adic Hodge theory, and a description of CM points on Shimura stacks in terms of associated Galois representations. References: arXiv:1711.09225, arXiv:1707.01236.
14:30
Fractional decompositions of dense graphs
Abstract
It is difficult to determine when a graph G can be edge-covered by edge-disjoint copies of a fixed graph F. That is, when it has an F-decomposition. However, if G is large and has a high minimum degree then it has an F-decomposition, as long as some simple divisibility conditions hold. Recent research allows us to prove bounds on the necessary minimum degree by studying a relaxation of this problem, where a fractional decomposition is sought.
I will show how a relatively simple random process can give a good approximation to a fractional decomposition of a dense graph, and how it can then be made exact. This improves the best known bounds for this problem.
Finite volume element methods: An overview
Abstract
In this talk, first we address the convergence issues of a standard finite volume element method (FVEM) applied to simple elliptic problems. Then, we discuss discontinuous finite volume element methods (DFVEM) for elliptic problems with emphasis on computational and theoretical advantages over the standard FVEM. Further, we present a natural extension of DFVEM employed for the elliptic problem to the Stokes problems. We also discuss suitability of these methods for the approximation of incompressible miscible displacement problems.
Spambot detection and polarization analysis: evidence from the Italian election Twitter data
Abstract
Fake accounts detection and users’ polarization are two very well known topics concerning the social media sphere, that have been extensively discussed and analyzed, both in the academic literature and in everyday life. Social bots are autonomous accounts that are explicitly created to increase the number of followers of a target user, in order to inflate its visibility and consensus in a social media context. For this reason, a great variety of methods for their detection have been proposed and tested. Polarisation, also known as confirmation bias, is instead the common tendency to look for information that confirms one's preexisting beliefs, while ignoring opposite ones. Within this environment, groups of individuals characterized by the same system of beliefs are very likely to form. In the present talk we will first review part of the literature discussing both these topics. Then we will focus on a new dataset collecting tweets from the last Italian parliament elections in 2018 and some preliminary results will be discussed.
A Cohomological Perspective on Algebraic Quantum Field Theory
Abstract
After outlining the principles of Algebraic Quantum Field Theory (AQFT) I will describe the generalization of Hochschild cohomology that is relevant to describing deformations in AQFT. An interaction is described by a cohomology class.
17:00
Growth of groups, isoperimetry and random walks
Abstract
Answering a question of Milnor, Grigorchuk constructed in the early eighties the
first examples of groups of intermediate growth, that is, finitely generated
groups with growth strictly between polynomial and exponential.
In joint work with Laurent Bartholdi, we show that under a mild regularity assumption, any function greater than exp(n^a), where `a' is a solution of the equation
2^(3-3/x)+ 2^(2-2/x)+2^(1-1/x)=2,
is a growth function of some group. These are the first examples of groups
of intermediate growth where the asymptotic of the growth function is known.
Among applications of our results is the fact that any group of locally subexponential growth
can be embedded as a subgroup of some group of intermediate growth (some of these latter groups cannot be subgroups in Grigorchuk groups).
In a recent work with Tianyi Zheng, we provide near optimal lower bounds
for Grigorchuk torsion groups, including the first Grigorchuk group. Our argument is by a construction of random walks with non-trivial Poisson boundary, defined by
a measure with power law decay.