Mon, 04 Jun 2018

16:00 - 17:00
L4

Rates of convergence to equilibrium in a one-dimensional kinetic equation

David Seifert
(Oxford)
Abstract

We consider a collisionless kinetic equation describing the probability density of particles moving in a one-dimensional domain subject to partly diffusive reflection at the boundary. It was shown in 2017 by Mokhtar-Kharroubi and Rudnicki that for large times such systems either converge to an invariant density or, if no invariant density exists, exhibit a so-called “sweeping phenomenon” in which the mass concentrates near small velocities. This dichotomy is obtained by means of subtle arguments relying on the theory of positive operator semigroups. In this talk I shall review some of these results before discussing how, under suitable assumptions both on the boundary operators (which in particular ensure that an invariant density exists) and on the initial density, one may even obtain estimates on the rate at which the system converges to its equilibrium. This is joint work with Mustapha Mokhtar-Kharroubi (Besançon).

Mon, 04 Jun 2018

15:45 - 16:45
L3

Genetic isolation by distance in a random environment

RAPHAEL FORIEN
(Ecole Polytechnique (ParisTech))
Abstract

I will present a mathematical model for the genetic evolution of a population which is divided in discrete colonies along a linear habitat, and for which the population size of each colony is random and constant in time. I will show that, under reasonable assumptions on the distribution of the population sizes, over large spatial and temporal scales, this population can be described by the solution to a stochastic partial differential equation with constant coefficients. These coefficients describe the effective diffusion rate of genes within the population and its effective population density, which are both different from the mean population density and the mean diffusion rate of genes at the microscopic scale. To do this, I will present a duality technique and a new convergence result for coalescing random walks in a random environment.

 

Mon, 04 Jun 2018
15:45
L6

Heegaard Floer, taut foliations, and regions of rational surgery slopes

Sarah Rasmussen
(Cambridge)
Abstract

Recent tools make it possible to partition the space of rational Dehn 
surgery slopes for a knot (or in some cases a link) in a 3-manifold into 
domains over which the Heegaard Floer homology of the surgered manifolds 
behaves continuously as a function of slope. I will describe some 
techniques for determining the walls of discontinuity separating these 
domains, along with efforts to interpret some aspects of this structure 
in terms of the behaviour of co-oriented taut foliations. This talk 
draws on a combination of independent work, previous joint work with 
Jake Rasmussen, and work in progress with Rachel Roberts.

Mon, 04 Jun 2018

14:15 - 15:15
L3

Laws of large numbers for a set of probability measures

ZENGJING CHEN
(Shandong University)
Abstract

In this paper, we investigate the limit properties of frequency of empirical averages when random variables are described by a set of probability measures and obtain a law of large numbers for upper-lower probabilities. Our result is an extension of the classical Kinchin's law of large numbers, but the proof is totally different.

keywords: Law of large numbers,capacity, non-additive probability, sub-linear expectation, indepence

paper by: Zengjing Chen School of Mathematics, Shandong University and Qingyang Liu Center for Economic Research, Shandong University

Mon, 04 Jun 2018
12:45
L3

(0,2) dualities and 4-simplices

Tudor Dimofte
(UC Davis and Oxford)
Abstract

3d N=2 Chern-Simons-matter theories have a large variety of boundary conditions that preserve 2d N=(0,2) supersymmetry, and support chiral algebras. I'll discuss some examples of how the chiral algebras transform across dualities. I'll then explain how to construct duality interfaces in 3d N=2 theories, and relate dualities *of* duality interfaces to "Pachner moves" in triangulations of 4-manifolds. Based on recent and upcoming work with K. Costello, D. Gaiotto, and N. Paquette.

Fri, 01 Jun 2018

14:00 - 15:00
L3

KATP channels and neonatal diabetes: from molecule to new therapy and beyond

Professor Dame Frances Ashcroft
(Department of Physiology Anatomy and Genetics University of Oxford)
Abstract

ATP-sensitive potassium (KATP) channels are critical for coupling changes in blood glucose to insulin secretion. Gain-of-function mutations in KATP channels cause a rare inherited form of diabetes that manifest soon after birth (neonatal diabetes). This talk shows how understanding KATP channel function has enabled many neonatal diabetes patients to switch from insulin injections to sulphonylurea drugs that block KATP channel activity, with considerable improvement in their clinical condition and quality of life.   Using a mouse model of neonatal diabetes, we also found that as little as 2 weeks of diabetes led to dramatic changes in gene expression, protein levels and metabolite concentrations. This reduced glucose-stimulated ATP production and insulin release. It also caused substantial glycogen storage and β-cell apoptosis. This may help explain why older neonatal diabetes patients with find it more difficult to transfer to drug therapy, and why the drug dose decreases with time in many patients. It also suggests that altered metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in type 2 diabetes.

Fri, 01 Jun 2018

13:00 - 14:00
L6

Multilevel Monte Carlo for Estimating Risk Measures

Mike Giles
Abstract

Joint work with Abdul-Lateef Haji-Ali

This talk will discuss efficient numerical methods for estimating the probability of a large portfolio loss, and associated risk measures such as VaR and CVaR. These involve nested expectations, and following Bujok, Hambly & Reisinger (2015) we use the number of samples for the inner conditional expectation as the key approximation parameter in the Multilevel Monte Carlo formulation. The main difference in this case is the indicator function in the definition of the probability. Here we build on previous work by Gordy & Juneja (2010) who analyse the use of a fixed number of inner samples, and Broadie, Du & Moallemi (2011) who develop and analyse an adaptive algorithm. I will present the algorithm, outline the main theoretical results and give the numerical results for a representative model problem. I will also discuss the extension to real portfolios with a large number of options based on multiple underlying assets.

Fri, 01 Jun 2018
12:00
N3.12

Offset Hypersurfaces and Persistent Homology of Algebraic Varieties

Maddie Weinstein
(UC Berkeley)
Abstract

We will discuss the algebraicity of two quantities central to the computation of persistent homology. We will also connect persistent homology and algebraic optimization. Namely, we will express the degree corresponding to the distance variable of the offset hypersurface in terms of the Euclidean distance degree of the starting variety, obtaining a new way to compute these degrees. Finally, we will describe the non-properness locus of the offset construction and use this to describe the set of points that are topologically interesting (the medial axis and center points of the bounded components of the complement of the variety) and relevant to the computation of persistent homology.

Thu, 31 May 2018

16:00 - 17:00
L6

Coherent sheaves on arithmetic schemes and basic results on arithmetic ampleness

François Charles
(Universite Paris-Sud)
Abstract

We will discuss a basic framework to deal with coherent sheaves on schemes over $\mathbb{Z}$, involving infinite-dimensional results on the geometry of numbers. As an application, we will discuss basic results, old and new, on arithmetic ampleness, such as Serre vanishing, Nakai-Moishezon, and Bertini. This is joint work with Jean-Benoît Bost.

Thu, 31 May 2018

16:00 - 17:30
L3

How long does it take to get there?

Herbert Huppert
(University of Cambridge)
Abstract

There are a huge number of nonlinear partial differential equations that do not have analytic solutions.   Often one can find similarity solutions, which reduce the number of independent variables, but still leads, generally, to a nonlinear equation.  This can, only sometimes, be solved analytically.  But always the solution is independent of the initial conditions.   What role do they play?   It is generally stated that the similarity  solution agrees with the (not determined) exact solution when (for some variable say t) obeys t >> t_1.   But what is  t_1?   How does it depend on the initial conditions?  How large must  t be for the similarity solution to be within 15, 10, 5, 1, 0.1, ….. percent of the real solution?   And how does this depend on the parameters and initial conditions of the problem?   I will explain how two such typical, but somewhat different, fundamental problems can be solved, both analytically and numerically,  and compare some of the results with small scale laboratory experiments, performed during the talk.  It will be suggested that many members of the audience could take away the ideas and apply them in their own special areas.

Thu, 31 May 2018

12:00 - 13:00
L5

Boundary layers in periodic homogenization

Christophe Prange
(University of Bordeaux)
Abstract

This talk is concerned with quantitative periodic homogenization in domains with boundaries. The quantitative analysis near boundaries leads to the study of boundary layers correctors, which have in general a nonperiodic structure. The interaction between the boundary and the microstructure creates geometric resonances, making the study of the asymptotics or continuity properties particularly challenging. The talk is based on work with S. Armstrong, T. Kuusi and J.-C. Mourrat, as well as work by Z. Shen and J. Zhuge

Wed, 30 May 2018

16:00 - 17:00
C5

The pants graph

Esmee te Winkel
(University of Warwick)
Abstract

In the 80s, Hatcher and Thurston introduced the pants graph as a tool to prove that the mapping class group of a closed, orientable surface is finitely presented. The pants graph remains relevant for the study of the mapping class group, sitting between the marking graph and the curve graph. More precisely, there is a sequence of natural coarse lipschitz maps taking the marking graph via the pants graph to the curve graph.

A second motivation for studying the pants graph comes from Teichmüller theory. Brock showed that the pants graph can be interpreted as a combinatorial model for Teichmüller space with the Weil-Petersson metric.

In this talk I will introduce the pants graph, discuss some of its properties and state a few open questions.

Wed, 30 May 2018
14:00
L4

Falcon: Compact lattice-based signatures based on the hash & sign paradigm

Thomas Prest
(Thales Communications & Security)
Abstract

Post-quantum cryptography has been one of the most active subfields of
cryptography in the last few years. This is especially true today as
standardization efforts are currently underway, with no less than 69
candidate cryptographic schemes proposed.

In this talk, I will present one of these schemes: Falcon, a signature
scheme based on the NTRU class of structured lattices. I will focus on
mathematical aspects of Falcon: for example how we take advantage of the
algebraic structure to speed up some operations, or how relying on the
most adequate probability divergence can go a long way in getting more
efficient parameters "for free". The talk will be concluded with a few
open problems.

Tue, 29 May 2018
15:45
L4

Frobenius splittings of toric varieties

Milena Hering
(Edinburgh)
Abstract



Varieties admitting Frobenius splittings exhibit very nice properties.
For example, many nice properties of toric varieties can be deduced from
the fact that they are Frobenius split. Varieties admitting a diagonal
splitting exhibit even nicer properties. In this talk I will give an
overview over the consequences of the existence of such splittings and
then discuss criteria for toric varieties to be diagonally split.

Tue, 29 May 2018

14:30 - 15:00
L5

Optimisation of a Steam Turbine Blade Path

Jonathan Grant-Peters
(InFoMM)
Abstract

The vast majority of the world's electricity is generated by converting thermal energy into electric energy by use of a steam turbine. Siemens are one of the worlds leading manufacturers of such
turbines, and aim to design theirs to be as efficient as possible. Using an internally built software, Siemens can estimate the efficiency which would result from a turbine design. In this presentation, we present the approaches that have been taken to improve turbine design using mathematical optimisation software. In particular, we focus on the failings of the approach currently taken, the obstacles in place which make solving this problem difficult, and the approach we intend to take to find a locally optimal solution.

Tue, 29 May 2018

14:00 - 15:00
L5

Formulations of Inverse Problems

Chris Farmer
(Oxford University)
Abstract

This talk will review the main Tikhonov and Bayesian smoothing formulations of inverse problems for dynamical systems with partially observed variables and parameters. The main contenders: strong-constraint, weak-constraint and penalty function formulations will be described. The relationship between these formulations and associated optimisation problems will be revealed.  To close we will indicate techniques for maintaining sparsity and for quantifying uncertainty.

Tue, 29 May 2018

12:45 - 13:30
C5

Homogenisation Applied to Electrical Calcination of Carbon Materials

Caoimhe Rooney
Abstract

Calcination describes the heat treatment of anthracite particles in a furnace to produce a partially-graphitised material which is suitable for use in electrodes and for other met- allurgical applications. Electric current is passed through a bed of anthracite particles, here referred to as a coke bed, causing Ohmic heating and high temperatures which result in the chemical and structural transformation of the material.

Understanding the behaviour of such mechanisms on the scale of a single particle is often dealt with through the use of computational models such as DEM (Discrete Element Methods). However, because of the great discrepancy between the length scale of the particles and the length scale of the furnace, we can exploit asymptotic homogenisation theory to simplify the problem.  

In this talk, we will present some results relating to the electrical and thermal conduction through granular material which define effective quantities for the conductivities by considering a microscopic representative volume within the material. The effective quantities are then used as parameters in the homogenised macroscopic model to describe calcination of anthracite. 

Tue, 29 May 2018

12:00 - 13:00
C3

Towards an Integrated Understanding of Neural Networks

David Rolnick
(MIT)
Abstract


Neural networks underpin both biological intelligence and modern AI systems, yet there is relatively little theory for how the observed behavior of these networks arises. Even the connectivity of neurons within the brain remains largely unknown, and popular deep learning algorithms lack theoretical justification or reliability guarantees.  In this talk, we consider paths towards a more rigorous understanding of neural networks. We characterize and, where possible, prove essential properties of neural algorithms: expressivity, learning, and robustness. We show how observed emergent behavior can arise from network dynamics, and we develop algorithms for learning more about the network structure of the brain.

Mon, 28 May 2018

16:00 - 17:00
L4

Quantitative estimates for advective equation with degenerate anelastic constraint

Didier Bresch
(Universite de Savoie)
Abstract

In this work with P.--E. Jabin, we are interested in quantitative estimates for advective equations with an anelastic constraint in presence of vacuum. More precisely, we derive a stability estimate and obtain the existence of renormalized solutions. The method itself introduces weights which sole a dual equation and allow to propagate appropriatly weighted norms on the initial solution. In a second time, a control on where those weights may vanish allow to deduce global and precise quantitative regularity estimates.

Mon, 28 May 2018
15:45
L6

Topological field theory on r-spin surfaces and the Arf invariant

Lorant Szegedy
(University of Hamburg)
Abstract

We present a state-sum construction of TFTs on r-spin surfaces which
uses a combinatorial model of r-spin structures. We give an example of
such a TFT which computes the Arf invariant for r even. We use the
combinatorial model and this TFT to calculate diffeomorphism classes of
r-spin surfaces with parametrized boundary.

Mon, 28 May 2018

14:15 - 15:15
L4

The generalized Kahler potential

Marco Gualtieri
(Toronto)
Abstract

I will explain our recent description of the fundamental degrees of freedom underlying a generalized Kahler structure. For a usual Kahler
structure, it is well-known that the geometry is determined by a complex structure, a Kahler class, and the choice of a positive(1,1)-form in this class, which depends locally on only a single real-valued function: the Kahler potential. Such a description for generalized Kahler geometry has been sought since it was discovered in1984. We show that a generalized Kahler structure of symplectic type is determined by a pair of holomorphic Poisson manifolds, a
holomorphic symplectic Morita equivalence between them, and the choice of a positive Lagrangian brane bisection, which depends locally on
only a single real-valued function, which we call the generalized Kahler potential. To solve the problem we make use of, and generalize,
two main tools: the first is the notion of symplectic Morita equivalence, developed by Weinstein and Xu to study Poisson manifolds;
the second is Donaldson's interpretation of a Kahler metric as a real Lagrangian submanifold in a deformation of the holomorphic cotangent bundle.

 

Mon, 28 May 2018
12:45
L3

Modular properties of supersttring scattering amplitudes,

Michael Green
(Cambridge and QMUL)
Abstract

The coefficients of the low energy expansion of closed string amplitudes transform as automorphic functions under En(Z) U-duality groups.
 The seminar will give an overview of some features of the coefficients of low order terms in this expansion, which involve a fascinating interplay between multiple zeta values and certain elliptic and hyperelliptic generalisations, Langlands Eisenstein series for the En groups, and the ultraviolet behaviour of maximally supersymmetric supergravity. 

 
Fri, 25 May 2018

16:00 - 17:00
L1

North meets South Colloquium

Claudia Scheimbauer and Alberto Paganini
Abstract

Claudia Scheimbauer

Title: Quantum field theory meets higher categories

Abstract: Studying physics has always been a driving force in the development of many beautiful pieces of mathematics in many different areas. In the last century, quantum field theory has been a central such force and there have been several fundamentally different approaches using and developing vastly different mathematical tools. One of them, Atiyah and Segal's axiomatic approach to topological and conformal quantum field theories, provides a beautiful link between the geometry of "spacetimes” (mathematically described as cobordisms) and algebraic structures. Combining this approach with the physical notion of "locality" led to the introduction of the language of higher categories into the topic. The Cobordism Hypothesis classifies "fully local" topological field theories and gives us a recipe to construct examples thereof by checking certain algebraic conditions generalizing the existence of the dual of a vector space. I will give an introduction to the topic and very briefly mention on my own work on these "extended" topological field theories.

Alberto Paganini

Title: Shape Optimization with Finite Elements

Abstract: Shape optimization means looking for a domain that minimizes a target cost functional. Such problems are commonly solved iteratively by constructing a minimizing sequence of domains. Often, the target cost functional depends on the solution to a boundary value problem stated on the domain to be optimized. This introduces the difficulty of solving a boundary value problem on a domain that changes at each iteration. I will suggest how to address this issue using finite elements and conclude with an application from optics.

Fri, 25 May 2018

14:00 - 15:00
L3

Delay differential equations with threshold-type delays

Professor Stephen Gourley
(Dept of Mathematics University of Surrey)
Abstract

I will discuss some properties of delay differential equations in which the delay is not prescribed a-priori but is determined from a threshold condition. Sometimes the delay depends on the solution of the differential equation and its history. A scenario giving rise to a threshold type delay is that larval insects sometimes experience halting or slowing down of development, known as diapause, perhaps as a consequence of intra-specific competition among larvae at higher densities. Threshold delays can result in population dynamical models having some unusual properties, for example, if the model has an Allee effect then diapause may cause extinction in some parameter regimes even where the initial population is high.

Please  note that this talk is only suitable for Mathematicians.

Fri, 25 May 2018
12:00
N3.12

Persistent homology and the approximation of intrinsic volumes

Florian Pausinger
(Queen's University Belfast)
Abstract

Persistent homology is an algebraic tool for quantifying topological features of shapes and functions, which has recently found wide applications in data and shape analysis. In the first and introductory part of this talk I recall the underlying ideas and basic concepts of this very active field of research. In the second part, I plan to sketch a concrete application of this concept to digital image processing. 

Fri, 25 May 2018

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Bogdan Toader, Jessica Williams, Federico Danieli, Jonathan Peters
(Mathematical Institute)
Thu, 24 May 2018

16:00 - 17:00
L6

Voronoi summation and applications to subconvexity

Edgar Assing
(University of Bristol)
Abstract

We will briefly revisit Voronoi summation in its classical form and mention some of its many applications in number theory. We will then show how to use the global Whittaker model to create Voronoi type formulae. This new approach allows for a wide range of weights and twists. In the end we give some applications to the subconvexity problem of degree two $L$-functions. 

Thu, 24 May 2018
16:00
C5

Witten-Reshetikhin-Turaev invariants

William Petersen
(Aarhus University)
Abstract

The Witten-Reshetikhin-Turaev invariant Z(X,K) of a closed oriented three-manifold X containing a knot K, was originally introduced by Witten in order to extend the Jones polynomial of knots  in terms of Chern-Simons theory. Classically, the Jones polynomial is defined for a knot inside the three-sphere in  a combinatorial manner. In Witten's approach, the Jones polynomial J(K) emerge as the expectation value of a certain observable in Chern-Simons theory, which makes sense when K is embedded in any closed oriented three-manifold X. Moreover; he proposed that these invariants should be extendable to so-called topological quantum field theories (TQFT's). There is a catch; Witten's ideas relied on Feynman path integrals, which made them unrigorous from a mathematical point of view. However; TQFT's extending the Jones polynomial were subsequently constructed mathematically through combinatorial means by Reshetikhin and Turaev. In this talk, I shall expand slightly on the historical motivation of WRT invariants, introduce the formalism of TQFT's, and present some of the open problems concerning WRT invariants. The guiding motif will be the analogy between TQFT and quantum field theory.

Thu, 24 May 2018

16:00 - 17:30
L4

Computation of optimal transport and related hedging problems via penalization and neural networks

Michael Kupper
(University of Konstanz)
Abstract

We present a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, and bounds on the distribution of a sum of dependent random variables. As an application we focus on the problem of risk aggregation under model uncertainty. The talk is based on joint work with Stephan Eckstein and Mathias Pohl.

Thu, 24 May 2018

16:00 - 17:30
L3

Understanding extreme wave events

Frederic Dias
(UCD Dublin)
Abstract

Statements in media about record wave heights being measured are more and more common, the latest being about a record wave of almost 24m in the Southern Ocean on 9 May 2018. We will review some of these wave measurements and the various techniques to measure waves. Then we will explain the various mechanisms that can produce extreme waves both in wave tanks and in the ocean. We will conclude by providing the mechanism that, we believe, explains some of the famous extreme waves. Note that extreme waves are not necessarily rogue waves and that rogue waves are not necessarily extreme waves.

Thu, 24 May 2018

14:00 - 15:00
L4

Optimization, equilibria, energy and risk

Prof. Michael Ferris
(University of Wisconsin)
Abstract


In the past few decades, power grids across the world have become dependent on markets that aim to efficiently match supply with demand at all times via a variety of pricing and auction mechanisms. These markets are based on models that capture interactions between producers, transmission and consumers. Energy producers typically maximize profits by optimally allocating and scheduling resources over time. A dynamic equilibrium aims to determine prices and dispatches that can be transmitted over the electricity grid to satisfy evolving consumer requirements for energy at different locations and times. Computation allows large scale practical implementations of socially optimal models to be solved as part of the market operation, and regulations can be imposed that aim to ensure competitive behaviour of market participants.

Questions remain that will be outlined in this presentation.

Firstly, the recent explosion in the use of renewable supply such as wind, solar and hydro has led to increased volatility in this system. We demonstrate how risk can impose significant costs on the system that are not modeled in the context of socially optimal power system markets and highlight the use of contracts to reduce or recover these costs. We also outline how battery storage can be used as an effective hedging instrument.

Secondly, how do we guarantee continued operation in rarely occuring situations and when failures occur and how do we price this robustness?

Thirdly, how do we guarantee appropriate participant behaviour? Specifically, is it possible for participants to develop strategies that move the system to operating points that are not socially optimal?

Fourthly, how do we ensure enough transmission (and generator) capacity in the long term, and how do we recover the costs of this enhanced infrastructure?
 

Thu, 24 May 2018

12:00 - 13:00
L5

The Cauchy problem in General Relativity and Kaluza Klein spacetimes

Zoe Wyatt
(University of Edinburgh and MIGSAA)
Abstract

In this talk I will start with a brief overview of the Cauchy problem for the Einstein equations of general relativity, and in particular the nonlinear stability of the trivial Minkowski solution in wave gauge as shown by Lindblad and Rodnianski. I will then discuss the Kaluza Klein spacetime of the form $R^{1+3} \times K$ where $K$ is the $n-$torus with the flat metric.  An interesting question to ask is whether this solution to the Einstein equations, viewed as an initial value problem, is stable to small perturbations of the initial data. Motivated by this problem, I will outline how the proof of stability in a restricted class of perturbations in fact follows from the work of Lindblad and Rodnianski, and discuss the physical justification behind this restriction. 

Wed, 23 May 2018

16:00 - 17:00
C5

Growth in Virtually Abelian Groups

Alex Evetts
(Heriot-Watt University)
Abstract

Elements of a finitely generated group have a natural notion of length: namely the length of a shortest word over the generators that represents the element. This allows us to study the growth of such groups by considering the size of spheres with increasing radii. One current area of interest is the rationality or otherwise of the formal power series whose coefficients are the sphere sizes. I will describe a combinatorial way to study this series for the class of virtually abelian groups, introduced by Benson in the 1980s, and then outline its applications to other types of growth series.

Tue, 22 May 2018

16:00 - 17:00
L5

Some questions on class field theory and model theory

Minhyong Kim
(Oxford)
Abstract

This lecture will give a brief review of the theory of non-abelian reciprocity maps and their applications to Diophantine geometry, and pose some questions for model-theorists.
 

Tue, 22 May 2018

15:45 - 16:45
L4

A Recursive Formula for Log Gromov-Witten Invariants

Navid Nabijou
(Imperial College London)
Abstract

Given a smooth variety X containing a smooth divisor Y, the relative Gromov-Witten invariants of (X,Y) are defined as certain counts of algebraic curves in X with specified orders of tangency to Y. Their intrinsic interest aside, they are an important part of any Gromov-Witten theorist’s toolkit, thanks to their role in the celebrated “degeneration formula.” In recent years these invariants have been significantly generalised, using techniques in logarithmic geometry. The resulting “log Gromov-Witten invariants” are defined for a large class of targets, and in particular give a rigorous definition of relative invariants for (X,D) where D is a normal crossings divisor. Besides being more general, these numbers are  intimately related to constructions in Mirror Symmetry, via the Gross-Siebert program. In this talk, we will describe a recursive formula for computing the invariants of (X,D) in genus zero. The result relies on a comparison theorem which expresses the log Gromov-Witten invariants as classical (i.e. non log-geometric) objects.
 

Tue, 22 May 2018

14:30 - 15:00
L5

Proximal methods for Mean Field Games with local couplings

Dr Dante Kalise
(Imperial College)
Abstract

In this talk we address the numerical approximation of Mean Field Games with local couplings. For finite difference discretizations of the Mean Field Game system, we follow a variational approach, proving that the schemes can be obtained as the optimality system of suitably defined optimization problems. In order to prove the existence of solutions of the scheme with a variational argument, the monotonicity of the coupling term is not used, which allow us to recover general existence results. Next, assuming next that the coupling term is monotone, the variational problem is cast as a convex optimization problem for which we study and compare several proximal type methods. These algorithms have several interesting features, such as global convergence and stability with respect to the viscosity parameter. We conclude by presenting numerical experiments assessing the performance of the proposed methods. In collaboration with L. Briceno-Arias (Valparaiso, CL) and F. J. Silva (Limoges, FR).

Tue, 22 May 2018

14:15 - 15:30
L4

g-algebras and the representations of their invariant subrings.

Anthony Joseph
(Weizmann Institute)
Abstract

Let $\mathfrak g$ be a semisimple Lie algebra.  A $\mathfrak g$-algebra is an associative algebra $R$ on which $\mathfrak g$ acts by derivations.  There are several significant examples.  Let $V$ a finite dimensional $\mathfrak g$ module and take  $R=\mathrm{End} V$ or $R=D(V)$ being the ring of derivations on  $V$ . Again take $R=U(\mathfrak g)$.   In all these cases  $ S=U(\mathfrak g)\otimes R$ is again a $\mathfrak g$-algebra.  Finally let $T$ denote the subalgebra of invariants of $S$.
 
For the first choice of $R$ above the representation theory of $T$ can be rather explicitly described in terms of Kazhdan-Lusztig polynomials.  In the second case the simple $T$ modules can be described in terms of the simple $D(V)$ modules.  In the third case it is shown that all simple $T$ modules are finite dimensional, despite the fact that $T$ is not a PI ring,  except for the case $\mathfrak  g =\mathfrak {sl}(2)$.

Tue, 22 May 2018

14:00 - 14:30
L5

Storage optimal semidefinite programming

Volkan Cevher
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Semidefinite convex optimization problems often have low-rank solutions that can be represented with O(p)-storage. However, semidefinite programming methods require us to store the matrix decision variable with size O(p^2), which prevents the application of virtually all convex methods at large scale.

Indeed, storage, not arithmetic computation, is now the obstacle that prevents us from solving large- scale optimization problems. A grand challenge in contemporary optimization is therefore to design storage-optimal algorithms that provably and reliably solve large-scale optimization problems in key scientific and engineering applications. An algorithm is called storage optimal if its working storage is within a constant factor of the memory required to specify a generic problem instance and its solution.

So far, convex methods have completely failed to satisfy storage optimality. As a result, the literature has largely focused on storage optimal non-convex methods to obtain numerical solutions. Unfortunately, these algorithms have been shown to be provably correct only under unverifiable and unrealistic statistical assumptions on the problem template. They can also sacrifice the key benefits of convexity, as they do not use key convex geometric properties in their cost functions.

To this end, my talk introduces a new convex optimization algebra to obtain numerical solutions to semidefinite programs with a low-rank matrix streaming model. This streaming model provides us an opportunity to integrate sketching as a new tool for developing storage optimal convex optimization methods that go beyond semidefinite programming to more general convex templates. The resulting algorithms are expected to achieve unparalleled results for scalable matrix optimization problems in signal processing, machine learning, and computer science.

Tue, 22 May 2018

12:30 - 13:30
C3

Cascade-Recovery Dynamics on Complex Networks

Nanxin Wei
(Department of Mathematics, Imperial College London)
Abstract


Cascading phenomena are prevalent in natural and social-technical complex networks. We study the persistent cascade-recovery dynamics on random networks which are robust against small trigger but may collapse for larger one. It is observed that depending on the relative intensity of triggering and recovery, the network belongs one of the two dynamical phases: collapsing or active phase. We devise an analytical framework which characterizes not only the critical behaviour but also the temporal evolution of network activity in both phases. Results from agent-based simulations show good agreement with theoretical calculations. This work is an important attempt in understanding networked systems gradually evolving into a state of critical transition, with many potential applications.
 

Tue, 22 May 2018

12:00 - 13:15
L4

Towards an M5-brane model: A 6d superconformal field theory

Christian Saemann
(Heriot Watt University)
Abstract

I will discuss a classical six-dimensional superconformal field theory containing a non-abelian tensor multiplet which we recently constructed in arXiv:1712.06623.

This theory satisfies many of the properties of the mysterious (2,0)-theory: non-abelian 2-form potentials, ADE-type gauge structure, reduction to Yang-Mills theory and reduction to M2-brane models. There are still some crucial differences to the (2,0)-theory, but our action seems to be a key stepping stone towards a potential classical formulation of the (2,0)-theory.

I will review in detail the underlying mathematics of categorified gauge algebras and categorified connections, which make our constructions possible.

 

Mon, 21 May 2018

16:00 - 17:00
L4

Recent advances in analysis of critical points of Landau-de Gennes energy in 2D and 3D

Georgy Kitavtsev
(Oxford)
Abstract

In the first part of this talk the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general k-radial symmetric boundary conditions, will be analysed. It will be shown that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2. Analysis of the associated harmonic map type problem arising in the limit of small elastic constants allows to identify three types of radial profiles: with two, three or full five components. In the second part of the talk different paths for emergency of non-radially symmetric solutions and their analytical structure in 2D as well as 3D cases will be discussed. These results is a joint work with Jonathan Robbins, Valery Slastikov and Arghir Zarnescu.
 

Mon, 21 May 2018

15:45 - 16:45
L3

Invariants of the signature

JOSCHA DIEHL
(Max Planck Institute Leipzig)
Abstract

Based on classical invariant theory, I describe a complete set of elements of the signature that is invariant to the general linear group, rotations or permutations.

A geometric interpretation of some of these invariants will be given.

Joint work with Jeremy Reizenstein (Warwick).

Mon, 21 May 2018
15:45
L5

Unbounded rank expanders, property (T), and upgrading

Masato Mimura
(EPFL Lausanne)
Abstract

The problem of "unbounded rank expanders" asks 
whether we can endow a system of generators with a sequence of 
special linear groups whose degrees tend to infinity over quotient rings 
of Z such that the resulting Cayley graphs form an expander family.
Kassabov answered this question in the affirmative. Furthermore, the 
completely satisfactory solution to this question was given by 
Ershov and Jaikin--Zapirain (Invent. Math., 2010);  they proved
Kazhdan's property (T) for elementary groups over non-commutative 
rings. (T) is equivalent to the fixed point property with respect to 
actions on Hilbert spaces by isometries.

We provide a new framework to "upgrade" relative fixed point 
properties for small subgroups to the fixed point property for the 
whole group. It is inspired by work of Shalom (ICM, 2006). Our 
main criterion is stated only in terms of intrinsic group structure 
(but *without* employing any form of bounded generation). 
This, in particular, supplies a simpler (but not quantitative) 
alternative proof of the aforementioned result of Ershov and 
Jaikin--Zapirain.  

If time permits, we will discuss other applications of our result.