Thu, 20 May 2021

16:00 - 17:00

Distribution Free, Anytime-Valid Tests for Elicitable Functionals Distribution Free, Anytime-Valid Tests for Elicitable Functionals

PHILIIPPE CASGRAIN
((ETH) Zurich)
Abstract

 

Abstract: We consider the problem of testing statistical hypotheses and building confidence sequences for elicitable and identifiable functionals, a broad class of statistics which are of particular interest in the field of quantitative risk management. Assuming a sequential testing framework in which data is collected in sequence, where a user may choose to accept or reject a hypothesis at any point in time, we provide powerful distribution-free and anytime-valid testing methods which rely on controlled test supermartingales. Leveraging tools from online convex optimization, we show that tests can be optimized to improve their statistical power, with asymptotic guarantees for rejecting false hypotheses. By "inverting the test", these methods are extended to the task of confidence sequence building. Lastly, we implement these techniques on a range of simple examples to demonstrate their effectiveness.

 

 

 

 

Thu, 20 May 2021

14:00 - 15:00
Virtual

Invariants of 4-Manifolds

Horia Magureanu
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 20 May 2021
14:00
Virtual

The bubble transform and the de Rham complex

Ragnar Winther
(University of Oslo)
Abstract

The bubble transform was a concept introduced by Richard Falk and me in a paper published in The Foundations of Computational Mathematics in 2016. From a simplicial mesh of a bounded domain in $R^n$ we constructed a map which decomposes scalar valued functions into a sum of local bubbles supported on appropriate macroelements.The construction is done without reference to any finite element space, but has the property that the standard continuous piecewise polynomial spaces are invariant. Furthermore, the transform is bounded in $L^2$ and $H^1$, and as a consequence we obtained a new tool for the understanding of finite element spaces of arbitrary polynomial order. The purpose of this talk is to review the previous results, and to discuss how to generalize the construction to differential forms such that the corresponding properties hold. In particular, the generalized transform will be defined such that it commutes with the exterior derivative.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 20 May 2021

12:00 - 13:00
Virtual

Next generation mesoscopic models for neural activity

Áine Byrne
(University College Dublin)
Abstract

The Wilson–Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. In this talk, I will introduce a new neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event related synchronisation and de-synchronisation. This derived mean field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson–Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex valued population synchrony measure. To highlight the usefulness of this next generation Wilson–Cowan style model I will show how it can be deployed in a number of neurobiological contexts, providing understanding of the changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex during movement, insights into patterns of functional-connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.

Thu, 20 May 2021
11:30
Virtual

Chromatic numbers of Stable Graphs

Yatir Halevi
(Ben Gurion University of the Negev)
Abstract
This is joint work with Itay Kaplan and Saharon Shelah.
Given a graph $(G,E)$, its chromatic number is the smallest cardinal $\kappa$ of a legal coloring of the vertices. We will mainly concentrate on the following strong form of Taylor's conjecture:
If $G$ is an infinite graph with chromatic number$\geq \aleph_1$ then it contains all finite subgraphs of $Sh_n(\omega)$ for some $n$, where $Sh_n(\omega)$ is the $n$-shift graph (which we will introduce).

 
The conjecture was disproved by Hajnal-Komjath. However, we will sketch a proof for a variant of this conjecture for $\omega$-stable\superstable\stable graphs. The proof uses a generalization of  Ehrenfeucht-Mostowski models, which we will (hopefully) introduce.
Thu, 20 May 2021
10:00
Virtual

Agrarian Invariants of Groups

Bin Sun
(University of Oxford)
Abstract

For a group G and a finite dimensional linear representation σ : G → GLn(D) over a skew field (division ring) D, the agrarian invariants with respect to σ are the homological invariants of G with coefficient module Dn. In this talk I will discuss the relationship between agrarian invariants, L 2 -invariants, Thurston norm and twisted Alexander polynomials. I will also discuss an ongoing work with Dawid Kielak.

Wed, 19 May 2021

16:30 - 18:00

The continuous gradability of the cut-point orders of R-trees

Sam Adam-Day
(Oxford University)
Abstract

An $\mathbb R$-tree is a metric space tree in which every point can be branching. Favre and Jonsson posed the following problem in 2004: can the class of orders underlying $\mathbb R$-trees be characterised by the fact that every branch is order-isomorphic to a real interval? In the first part of the talk, I answer this question in the negative: there is a branchwise-real tree order which is not continuously gradable. In the second part, I show that a branchwise-real tree order is continuously gradable if and only if every embedded well-stratified (i.e. set-theoretic) tree is $\mathbb R$-gradable. This tighter link with set theory is put to work in the third part answering a number of refinements of the main question, yielding several independence results.

Wed, 19 May 2021

11:00 - 12:30
Virtual

Extensions of Functions - Lecture 2 of 4

Dr. Krzysztof Ciosmak
(Oxford University)
Further Information

4 x 1.5 hour Lectures 

Aimed at: any DPhil students with interest in learning about extensions of functions. 

Suggested Pre-requisites: Suitable for OxPDE students, but also of interests to functional analysts, geometers, probabilists, numerical analysts and anyone who has a suitable level of prerequisite knowledge.

 

Abstract

Abstract. The aim of the course is to present several results on extensions of functions. Among the most important are Kirszbraun's and Whitney's theorems.
They provide powerful technical tools in many problems of analysis. One way to view these theorems is that they show that there exists an interpolation
of data with certain properties. In this context they are useful in computer science, e.g. in clustering of data (see e.g. [26, 23]) and in dimension reduction (see e.g. [15]).

1. Syllabus
Lecture 1. McShane's theorem [25], Kirszbraun's theorem [18, 31, 35], Kneser- Poulsen conjecture [19, 29, 16].
Lecture 2. Whitney's covering and associated partition of unity, Whitney's ex-tension theorem [37, 12, 33].
Lecture 3. Whitney's theorem { minimal Lipschitz extensions [22].
Lecture 4. Ball's extension theorem, Markov type and cotype [6].

2. Required mathematical background
Markov chains, Hilbert spaces, Banach spaces, metric spaces, Zorn lemma

3. Reading list
The reading list consists of all the papers cited above, lecture notes [27], and parts of books [36, 8].

4. Assesment
Students will be encouraged to give a short talk on a topic related to the content of the course. Suggested topics include:
(1) Brehm's theorem [10],
(2) continuity of Kirszbraun's extension theorem [20],
(3) Kirszbraun's theorem for Alexandrov spaces [21, 1],
(4) two-dimensional Kneser-Poulsen conjecture [9],
(5) origami [11],
(6) absolutely minimising Lipschitz extensions and innity Laplacian [17, 32,
34, 2, 3, 5, 4],
(7) Fenchel duality and Fitzpatrich functions [30, 7],
(8) sharp form of Whitney's extension theorem [13],
(9) Whitney's extension theorem for Cm [14],
(10) Markov type and cotype calculation [27, 6, 28], 

(11) extending Lipschitz functions via random metric partitions [24, 27].

References
1. S. Alexander, V. Kapovitch, and A. Petrunin, Alexandrov meets Kirszbraun, 2017.
2. G. Aronsson, Minimization problems for the functional supx F(x; f(x); f0(x)), Ark. Mat. 6 (1965), no. 1, 33{53.
3. , Minimization problems for the functional supx F(x; f(x); f0(x))(ii), Ark. Mat. 6 (1966), no. 4-5, 409{431.
4. , Extension of functions satisfying lipschitz conditions, Ark. Mat. 6 (1967), no. 6, 551{561.
5. , Minimization problems for the functional supx F(x; f(x); f0(x))(iii), Ark. Mat. 7 (1969), no. 6, 509{512.
6. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric & Functional Analysis GAFA 2 (1992), no. 2, 137{172.
7. H. Bauschke, Fenchel duality, Fitzpatrick functions and the extension of rmly nonexpansive mappings, Proceedings of the American Mathematical Society 135 (2007), no. 1, 135{139. MR 2280182
8. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Colloquium publications (American Mathematical Society) ; v. 48, American Mathematical Society, Providence, R.I., 2000 (eng).
9. K. Bezdek and R. Connelly, Pushing disks apart { the Kneser-Poulsen conjecture in the plane, Journal fur die reine und angewandte Mathematik (2002), no. 553, 221 { 236.
10. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on Rm, J. Geom. 16 (1981), no. 2, 187{193. MR 642266
11. B. Dacorogna, P. Marcellini, and E. Paolini, Lipschitz-continuous local isometric immersions: rigid maps and origami, Journal de Mathematiques Pures et Appliques 90 (2008), no. 1, 66 { 81.
12. L. C. Evans and R. F. Gariepy, Measure theory and ne properties of functions; Rev. ed., Textbooks in mathematics, ch. 6, CRC Press, Oakville, 2015.
13. C. L. Feerman, A sharp form of Whitney's extension theorem, Annals of Mathematics 161 (2005), no. 1, 509{577. MR 2150391
14. , Whitney's extension problem for Cm, Annals of Mathematics 164 (2006), no. 1, 313{359. MR 2233850
15. L.-A. Gottlieb and R. Krauthgamer, A nonlinear approach to dimension reduction, Weizmann Institute of Science.
16. M. Gromov, Monotonicity of the volume of intersection of balls, Geometrical Aspects of Functional Analysis (Berlin, Heidelberg) (J. Lindenstrauss and V. D. Milman, eds.), Springer Berlin Heidelberg, 1987, pp. 1{4.
17. R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis 123 (1993), no. 1, 51{74.
18. M. Kirszbraun,  Uber die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Mathematicae 22 (1934), no. 1, 77{108 (ger).
19. M. Kneser, Einige Bemerkungen uber das Minkowskische Flachenma, Archiv der Mathematik 6 (1955), no. 5, 382{390.
20. E. Kopecka, Bootstrapping Kirszbraun's extension theorem, Fund. Math. 217 (2012), no. 1, 13{19. MR 2914919
21. U. Lang and V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geometric & Functional Analysis GAFA 7 (1997), no. 3, 535{560. MR 1466337
22. E. Le Gruyer, Minimal Lipschitz extensions to dierentiable functions dened on a Hilbert space, Geometric and Functional Analysis 19 (2009), no. 4, 1101{1118. MR 2570317
23. J. Lee, Jl lemma and Kirszbraun's extension theorem, 2020, Sublinear Algorithms for Big Data Lectues Notes, Brown University.
24. J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones mathematicae 160 (2005), no. 1, 59{95.
25. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837{842. MR 1562984
26. A. Naor, Probabilistic clustering of high dimensional norms, pp. 690{709. 

27. , Metric embeddings and Lipschitz extensions, Princeton University, Lecture Notes, 2015.
28. A. Naor, Y. Peres, O. Schramm, and S. Sheeld, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165{197.
29. E. T. Poulsen, Problem 10, Mathematica Scandinavica 2 (1954), 346.
30. S. Reich and S. Simons, Fenchel duality, Fitzpatrick functions and the Kirszbraun{Valentine extension theorem, Proceedings of the American Mathematical Society 133 (2005), no. 9, 2657{2660. MR 2146211
31. I. J. Schoenberg, On a Theorem of Kirzbraun and Valentine, The American Mathematical Monthly 60 (1953), no. 9, 620{622. MR 0058232
32. S. Sheeld and C. K. Smart, Vector-valued optimal Lipschitz extensions, Communications on Pure and Applied Mathematics 65 (2012), no. 1, 128{154. MR 2846639
33. E. Stein, Singular integrals and dierentiability properties of functions, ch. 6, Princeton University Press, 1970.
34. P. V. Than, Extensions lipschitziennes minimales, Ph.D. thesis, INSA de Rennes, 2015.
35. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83{93. MR 0011702
36. J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete ; Bd. 84, Springer-Verlag, Berlin, 1975 (eng).
37. H. Whitney, Analytic extensions of dierentiable functions dened in closed sets, Transactions of the American Mathematical Society 36 (1934), no. 1, 63{89. MR 1501735 

University of Oxford, Mathematical Institute and St John's College, Oxford, United Kingdom
E-mail address: @email

Tue, 18 May 2021
16:00
Virtual

Conformal Block Expansion in Celestial CFT

Ana Maria Raclariu
(Perimeter Institute)
Abstract

The 4D 4-point scattering amplitude of massless scalars via a massive exchange can be expressed in a basis of conformal primary particle wavefunctions. In this talk I will show that the resulting celestial amplitude admits a decomposition as a sum over 2D conformal blocks. This decomposition is obtained by contour deformation upon expanding the celestial amplitude in a basis of conformal partial waves. The conformal blocks include intermediate exchanges of spinning light-ray states, as well as scalar states with positive integer conformal weights. The conformal block prefactors are found as expected to be quadratic in the celestial OPE coefficients. Finally, I will comment on implications of this result for celestial holography and discuss some open questions.

Tue, 18 May 2021

15:30 - 16:30

Integrability of random tilings with doubly periodic weights

Maurice Duits
(KTH Stockholm)
Abstract

In recent years important progress has been made in the understanding of random tilings of large Aztec diamonds with doubly periodic weights. Due to the double periodicity a new phase appears that  has not been observed in tiling models with uniform weights. One of the challenges is to find expressions of for the correlation functions that are amenable for asymptotic studies. In the case of the uniform weight the model is an example of a Schur process and, consequently,  such expressions for the correlation functions are known and well-studied in that case. In a joint work with Tomas Berggren we studied a more  general  integrable structure that includes certain doubly periodic weightings planar domains, such as the Aztec diamond.  A key feature is a dynamical system hiding in the background. In case of a periodic orbit, explicit double integrals for the correlation function can be found, paving the way for an asymptotic study using saddle point methods.

Tue, 18 May 2021
15:15
Virtual

Factors in randomly perturbed graphs

Amedeo Sgueglia
(LSE)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We study the model of randomly perturbed dense graphs, which is the union of any $n$-vertex graph $G_\alpha$ with minimum degree at least $\alpha n$ and the binomial random graph $G(n,p)$. In this talk, we shall examine the following central question in this area: to determine when $G_\alpha \cup G(n,p)$ contains $H$-factors, i.e. spanning subgraphs consisting of vertex disjoint copies of the graph $H$. We offer several new sharp and stability results.
This is joint work with Julia Böttcher, Olaf Parczyk, and Jozef Skokan.

Tue, 18 May 2021
14:30
Virtual

Numerical analysis of a topology optimization problem for Stokes flow

John Papadopoulos
(Mathematical Insittute)
Abstract

A topology optimization problem for Stokes flow finds the optimal material distribution of a Stokes fluid that minimizes the fluid’s power dissipation under a volume constraint. In 2003, T. Borrvall and J. Petersson [1] formulated a nonconvex optimization problem for this objective. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this talk, we will extend and refine their numerical analysis. We will show that there exist finite element functions, satisfying the necessary first-order conditions of optimality, that converge strongly to each isolated local minimizer of the problem.

[1] T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77–107. doi:10.1002/fld.426.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 18 May 2021
14:15
Virtual

Categorification of the elliptic Hall algebra

Alistair Savage
(Ottawa)
Abstract

The elliptic Hall algebra has appeared in many different contexts in representation theory and geometry under different names.  We will explain how this algebra is categorified by the quantum Heisenberg category.  This diagrammatic category is modelled on affine Hecke algebras and can be viewed as a deformation of the framed HOMFLYPT skein category underpinning the HOMFLYPT link invariant.  Using the categorification of the elliptic Hall algebra, one can construct large families of representations for this algebra.

Tue, 18 May 2021
14:00
Virtual

Benjamini-Schramm local limits of sparse random planar graphs

Mihyun Kang
(Graz)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk we will discuss some classical and recent results on local limits of random graphs. It is well known that the limiting object of the local structure of the classical Erdos-Renyi random graph is a Galton-Watson tree. This can nicely be formalised in the language of Benjamini-Schramm or Aldous-Steele local weak convergence. Regarding local limits of sparse random planar graphs, there is a smooth transition from a Galton-Watson tree to a Skeleton tree. This talk is based on joint work with Michael Missethan.

Tue, 18 May 2021
14:00
Virtual

Hashing embeddings of optimal dimension, with applications to linear least squares

Zhen Shao
(Mathematical Institute (University of Oxford))
Abstract

We investigate theoretical and numerical properties of sparse sketching for both dense and sparse Linear Least Squares (LLS) problems. We show that, sketching with hashing matrices --- with one nonzero entry per column and of size proportional to the rank of the data matrix --- generates a subspace embedding with high probability, provided the given data matrix has low coherence; thus optimal residual values are approximately preserved when the LLS matrix has similarly important rows. We then show that using $s-$hashing matrices, with $s>1$ nonzero entries per column, satisfy similarly good sketching properties for a larger class of low coherence data matrices. Numerically, we introduce our solver Ski-LLS for solving generic dense or sparse LLS problems. Ski-LLS builds upon the successful strategies employed in the Blendenpik and LSRN solvers, that use sketching to calculate a preconditioner before applying the iterative LLS solver LSQR. Ski-LLS significantly improves upon these sketching solvers by judiciously using sparse hashing sketching while also allowing rank-deficiency of input; furthermore, when the data matrix is sparse, Ski-LLS also applies a sparse factorization to the sketched input. Extensive numerical experiments show Ski-LLS is also competitive with other state-of-the-art direct and preconditioned iterative solvers for sparse LLS, and outperforms them in the significantly over-determined regime.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 18 May 2021

14:00 - 15:00
Virtual

FFTA: Modularity maximisation for graphons

Florian Klimm
(Imperial College London)
Abstract

Networks are a widely-used tool to investigate the large-scale connectivity structure in complex systems and graphons have been proposed as an infinite size limit of dense networks. The detection of communities or other meso-scale structures is a prominent topic in network science as it allows the identification of functional building blocks in complex systems. When such building blocks may be present in graphons is an open question. In this paper, we define a graphon-modularity and demonstrate that it can be maximised to detect communities in graphons. We then investigate specific synthetic graphons and show that they may show a wide range of different community structures. We also reformulate the graphon-modularity maximisation as a continuous optimisation problem and so prove the optimal community structure or lack thereof for some graphons, something that is usually not possible for networks. Furthermore, we demonstrate that estimating a graphon from network data as an intermediate step can improve the detection of communities, in comparison with exclusively maximising the modularity of the network. While the choice of graphon-estimator may strongly influence the accord between the community structure of a network and its estimated graphon, we find that there is a substantial overlap if an appropriate estimator is used. Our study demonstrates that community detection for graphons is possible and may serve as a privacy-preserving way to cluster network data.

arXiv link: https://arxiv.org/abs/2101.00503

Tue, 18 May 2021
12:00
Virtual

Twistor sigma models, Plebanski generating functions and graviton scattering

Lionel Mason
(Oxford)
Abstract

Plebanski generating functions give a compact encoding of the geometry of self-dual Ricci-flat space-times or hyper-Kahler spaces.  They have applications as generating functions for BPS/DT/Gromov-Witten invariants.  We first show that Plebanski's first fundamental form also provides a generating function for the gravitational MHV amplitude.  We then obtain these Plebanski generating functions from the corresponding twistor spaces as the value of the action of new sigma models for holomorphic curves in twistor space.   
In four-dimensions, perturbations of the hyperk¨ahler structure corresponding to positive helicity gravitons. The sigma model’s perturbation theory gives rise to a sum of tree diagrams for the gravity MHV amplitude observed previously in the literature, and their summation via a matrix tree theorem gives a first-principles derivation of Hodges’ determinant formula directly from general relativity. We generalise the twistor sigma model to higher-degree (defined in the first instance with a cosmological constant), giving a new generating principle for the full tree-level graviton S-matrix in general with or without  cosmological constant.  This is joint work with Tim Adamo and Atul Sharma in https://arxiv.org/abs/2103.16984.  

Tue, 18 May 2021

11:00 - 12:30
Virtual

Extensions of Functions - Lecture 1 of 4

Dr. Krzysztof Ciosmak
(Oxford University)
Further Information

4 x 1.5 hour Lectures 

Aimed at: any DPhil students with interest in learning about extensions of functions. 

Suitable for OxPDE students, but also of interest to probabilists, functional analysts,  geometers and numerical analysts, and has a suitable level of prerequisites knowledge for people from those specialisms to join. 

Abstract

Abstract. The aim of the course is to present several results on extensions of functions. Among the most important are Kirszbraun's and Whitney's theorems.
They provide powerful technical tools in many problems of analysis. One way to view these theorems is that they show that there exists an interpolation
of data with certain properties. In this context they are useful in computer science, e.g. in clustering of data (see e.g. [26, 23]) and in dimension reduction (see e.g. [15]).

1. Syllabus
Lecture 1. McShane's theorem [25], Kirszbraun's theorem [18, 31, 35], Kneser- Poulsen conjecture [19, 29, 16].
Lecture 2. Whitney's covering and associated partition of unity, Whitney's ex-tension theorem [37, 12, 33].
Lecture 3. Whitney's theorem { minimal Lipschitz extensions [22].
Lecture 4. Ball's extension theorem, Markov type and cotype [6].

2. Required mathematical background
Markov chains, Hilbert spaces, Banach spaces, metric spaces, Zorn lemma

3. Reading list
The reading list consists of all the papers cited above, lecture notes [27], and parts of books [36, 8].

4. Assesment
Students will be encouraged to give a short talk on a topic related to the content of the course. Suggested topics include:
(1) Brehm's theorem [10],
(2) continuity of Kirszbraun's extension theorem [20],
(3) Kirszbraun's theorem for Alexandrov spaces [21, 1],
(4) two-dimensional Kneser-Poulsen conjecture [9],
(5) origami [11],
(6) absolutely minimising Lipschitz extensions and innity Laplacian [17, 32,
34, 2, 3, 5, 4],
(7) Fenchel duality and Fitzpatrich functions [30, 7],
(8) sharp form of Whitney's extension theorem [13],
(9) Whitney's extension theorem for Cm [14],
(10) Markov type and cotype calculation [27, 6, 28], 

(11) extending Lipschitz functions via random metric partitions [24, 27].

 

References
1. S. Alexander, V. Kapovitch, and A. Petrunin, Alexandrov meets Kirszbraun, 2017.
2. G. Aronsson, Minimization problems for the functional supx F(x; f(x); f0(x)), Ark. Mat. 6 (1965), no. 1, 33{53.
3. , Minimization problems for the functional supx F(x; f(x); f0(x))(ii), Ark. Mat. 6 (1966), no. 4-5, 409{431.
4. , Extension of functions satisfying lipschitz conditions, Ark. Mat. 6 (1967), no. 6, 551{561.
5. , Minimization problems for the functional supx F(x; f(x); f0(x))(iii), Ark. Mat. 7 (1969), no. 6, 509{512.
6. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric & Functional Analysis GAFA 2 (1992), no. 2, 137{172.
7. H. Bauschke, Fenchel duality, Fitzpatrick functions and the extension of rmly nonexpansive mappings, Proceedings of the American Mathematical Society 135 (2007), no. 1, 135{139. MR 2280182
8. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Colloquium publications (American Mathematical Society) ; v. 48, American Mathematical Society, Providence, R.I., 2000 (eng).
9. K. Bezdek and R. Connelly, Pushing disks apart { the Kneser-Poulsen conjecture in the plane, Journal fur die reine und angewandte Mathematik (2002), no. 553, 221 { 236.
10. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on Rm, J. Geom. 16 (1981), no. 2, 187{193. MR 642266
11. B. Dacorogna, P. Marcellini, and E. Paolini, Lipschitz-continuous local isometric immersions: rigid maps and origami, Journal de Mathematiques Pures et Appliques 90 (2008), no. 1, 66 { 81.
12. L. C. Evans and R. F. Gariepy, Measure theory and ne properties of functions; Rev. ed., Textbooks in mathematics, ch. 6, CRC Press, Oakville, 2015.
13. C. L. Feerman, A sharp form of Whitney's extension theorem, Annals of Mathematics 161 (2005), no. 1, 509{577. MR 2150391
14. , Whitney's extension problem for Cm, Annals of Mathematics 164 (2006), no. 1, 313{359. MR 2233850
15. L.-A. Gottlieb and R. Krauthgamer, A nonlinear approach to dimension reduction, Weizmann Institute of Science.
16. M. Gromov, Monotonicity of the volume of intersection of balls, Geometrical Aspects of Functional Analysis (Berlin, Heidelberg) (J. Lindenstrauss and V. D. Milman, eds.), Springer Berlin Heidelberg, 1987, pp. 1{4.
17. R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis 123 (1993), no. 1, 51{74.
18. M. Kirszbraun,  Uber die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Mathematicae 22 (1934), no. 1, 77{108 (ger).
19. M. Kneser, Einige Bemerkungen uber das Minkowskische Flachenma, Archiv der Mathematik 6 (1955), no. 5, 382{390.
20. E. Kopecka, Bootstrapping Kirszbraun's extension theorem, Fund. Math. 217 (2012), no. 1, 13{19. MR 2914919
21. U. Lang and V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geometric & Functional Analysis GAFA 7 (1997), no. 3, 535{560. MR 1466337
22. E. Le Gruyer, Minimal Lipschitz extensions to dierentiable functions dened on a Hilbert space, Geometric and Functional Analysis 19 (2009), no. 4, 1101{1118. MR 2570317
23. J. Lee, Jl lemma and Kirszbraun's extension theorem, 2020, Sublinear Algorithms for Big Data Lectues Notes, Brown University.
24. J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones mathematicae 160 (2005), no. 1, 59{95.
25. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837{842. MR 1562984
26. A. Naor, Probabilistic clustering of high dimensional norms, pp. 690{709. 

27. , Metric embeddings and Lipschitz extensions, Princeton University, Lecture Notes, 2015.
28. A. Naor, Y. Peres, O. Schramm, and S. Sheeld, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165{197.
29. E. T. Poulsen, Problem 10, Mathematica Scandinavica 2 (1954), 346.
30. S. Reich and S. Simons, Fenchel duality, Fitzpatrick functions and the Kirszbraun{Valentine extension theorem, Proceedings of the American Mathematical Society 133 (2005), no. 9, 2657{2660. MR 2146211
31. I. J. Schoenberg, On a Theorem of Kirzbraun and Valentine, The American Mathematical Monthly 60 (1953), no. 9, 620{622. MR 0058232
32. S. Sheeld and C. K. Smart, Vector-valued optimal Lipschitz extensions, Communications on Pure and Applied Mathematics 65 (2012), no. 1, 128{154. MR 2846639
33. E. Stein, Singular integrals and dierentiability properties of functions, ch. 6, Princeton University Press, 1970.
34. P. V. Than, Extensions lipschitziennes minimales, Ph.D. thesis, INSA de Rennes, 2015.
35. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83{93. MR 0011702
36. J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete ; Bd. 84, Springer-Verlag, Berlin, 1975 (eng).
37. H. Whitney, Analytic extensions of dierentiable functions dened in closed sets, Transactions of the American Mathematical Society 36 (1934), no. 1, 63{89. MR 1501735 

 

University of Oxford, Mathematical Institute and St John's College, Oxford, United Kingdom
E-mail address: @email

 

Mon, 17 May 2021

16:00 - 17:00

Kinetic Theory for Hamilton-Jacobi PDEs

FRAYDOUN REZAKHANLOU
(Berkeley, USA)
Abstract

The flow of a Hamilton-Jacobi PDE yields a dynamical system on the space of continuous functions. When the Hamiltonian function is convex in the momentum variable, and the spatial dimension is one, we may restrict the flow to piecewise smooth functions and give a kinetic description for the solution. We regard the locations of jump discontinuities of the first derivative of solutions as the sites of particles. These particles interact via collisions and coagulations. When these particles are selected randomly according to certain Gibbs measures initially, then the law of particles remains Gibbsian at later times, and one can derive a Boltzmann/Smoluchowski type PDE for the evolution of these Gibbs measures.  In higher dimensions, we assume that the Hamiltonian function is independent of position and  that the initial condition is piecewise linear and convex. Such initial conditions can be identified as (Laguerre) tessellations and the Hamilton-Jacobi evolution  can be described as a billiard on the set of tessellations.

Mon, 17 May 2021

16:00 - 17:00
Virtual

Distributions of Character Sums

Ayesha Hussain
(Bristol)
Abstract

Over the past few decades, there has been a lot of interest in partial sums of Dirichlet characters. Montgomery and Vaughan showed that these character sums remain a constant size on average and, as a result, a lot of work has been done on the distribution of the maximum. In this talk, we will investigate the distribution of these character sums themselves, with the main goal being to describe the limiting distribution as the prime modulus approaches infinity. This is motivated by Kowalski and Sawin’s work on Kloosterman paths.
 

Mon, 17 May 2021

15:45 - 16:45
Virtual

Tail equivalence of unicorn paths

Piotr Przytycki
(McGill University)
Abstract

Let S be an orientable surface of finite type. Using Pho-On's infinite unicorn paths, we prove the hyperfiniteness of the orbit equivalence relation coming from the action of the mapping class group of S on the Gromov boundary of the arc graph of S. This is joint work with Marcin Sabok.

Mon, 17 May 2021
14:15
Virtual

A Seiberg-Witten Floer stable homotopy type

Matt Stoffregen
(Michigan State University)
Abstract

We give a brief introduction to Floer homotopy, from the Seiberg-Witten point of view.  We will then discuss Manolescu's version of finite-dimensional approximation for rational homology spheres.  We prove that a version of finite-dimensional approximation for the Seiberg-Witten equations associates equivariant spectra to a large class of three-manifolds.  In the process we will also associate, to a cobordism of three-manifolds, a map between spectra.  We give some applications to intersection forms of four-manifolds with boundary. This is joint work with Hirofumi Sasahira. 

Mon, 17 May 2021
14:00
Virtual

TBA

Thiago Fleury
(IIP Brazil)
Fri, 14 May 2021
16:00
Virtual

Leaps and bounds towards scale separation

Bruno De Luca
(Stanford University)
Abstract

In a broad class of gravity theories, the equations of motion for vacuum compactifications give a curvature bound on the Ricci tensor minus a multiple of the Hessian of the warping function. Using results in so-called Bakry-Émery geometry, I will show how to put rigorous general bounds on the KK scale in gravity compactifications in terms of the reduced Planck mass or the internal diameter.
If time permits, I will reexamine in this light the local behavior in type IIA for the class of supersymmetric solutions most promising for scale separation. It turns out that the local O6-plane behavior cannot be smoothed out as in other local examples; it generically turns into a formal partially smeared O4.

Fri, 14 May 2021

16:00 - 17:00
Virtual

Academic positions between PhD and permanent jobs - a panel discussion

Candy Bowtell and Luci Basualdo Bonatto
(University of Oxford)
Abstract

In this session we will host a Q&A with current researchers who have recently gone through successful applications as well as more senior staff who have been on interview panels and hiring committees for postdoctoral positions in mathematics. The session will be a chance to get varied perspectives on the application process and find out about the different types of academic positions to apply for.

The panel members will be Candy Bowtell, Luci Basualdo Bonatto, Mohit Dalwadi, Ben Fehrman and Frances Kirwan.