Mon, 16 Jan 2017

15:45 - 16:45
L6

Coarse embeddings, and how to avoid them

David Hume
(Oxford)
Abstract

Coarse embeddings occur completely naturally in geometric group theory: every finitely generated subgroup of a finitely generated group is coarsely embedded. Since even very nice classes of groups - hyperbolic groups or right-angled Artin groups for example - are known to have 'wild' collections of subgroups, there are precious few invariants that one may use to prove a statement of the form '$H$ does not coarsely embed into $G$' for two finitely generated groups $G,H$.
The growth function and the asymptotic dimension are two coarse invariants which which have been extensively studied, and a more recent invariant is the separation profile of Benjamini-Schramm-Timar.

In this talk I will describe a new spectrum of coarse invariants, which include both the separation profile and the growth function, and can be used to tackle many interesting problems, for instance: Does there exist a coarse embedding of the Baumslag-Solitar group $BS(1,2)$ or the lamplighter group $\mathbb{Z}_2\wr\mathbb{Z}$ into a hyperbolic group?

This is part of an ongoing collaboration with John Mackay and Romain Tessera.
 

Mon, 16 Jan 2017

14:15 - 15:15
L4

Invariants and moduli revisited: the case of a single root

Brent Doran
Abstract

What is the correct combinatorial object to encode a linear representation?  Many shadows of this problem have been studied:moment polytopes, Duistermaat-Heckman measures, Okounkov bodies.  We suggest that already in very simple cases these miss a crucial feature.  The ring theory, as opposed to just the linear algebra, of the group action on the coordinate ring, depends on some non-trivial lattice geometry and an associated filtration.  Some striking similarities to, and key differences from, the theory of toric varieties ensue.  Finite and non-finite generation phenomena emerge naturally.  We discuss motivations from, and applications to, questions in the effective geometry of moduli of curves.

 

Mon, 16 Jan 2017

12:45 - 13:45
L3

The null string origin of the ambitwistor string

Eduardo Casali
(Oxford)
Abstract

The ambitwistor string of Mason and Skinner has been very successful in describing field theory amplitudes, at both loop and tree-level for a variety of theories. But the original action given by Mason and Skinner is already partially gauge-fixed, which obscures some issues related to modular invariance and the connection to conventional string theories. In this talk I will argue that the Null string is the ungauge-fixed version of the Ambitwistor string. This clarifies the geometry of the original Ambitwistor string and gives a road map to understanding modular invariance, and gives new formulas for loop amplitudes in which we expect that UV divergences will be easier to analyse.

 
 
Thu, 12 Jan 2017
14:00
L5

Tight Optimality and Convexity Conditions for Piecewise Smooth Functions

Prof. Andreas Griewank
(Yachay Tech University)
Abstract

 Functions defined by evaluation programs involving smooth  elementals and absolute values as well as max and min are piecewise smooth. For this class we present first and second order, necessary and sufficient conditions for the functions to be locally optimal, or convex, or at least possess a supporting hyperplane. The conditions generalize the classical KKT and SSC theory and are constructive; though in the case of convexity they may be combinatorial to verify. As a side product we find that, under the Mangasarin-Fromowitz-Kink-Qualification, the well established nonsmooth concept of subdifferential regularity is equivalent to first order convexity. All results are based on piecewise linearization and suggest corresponding optimization algorithms.

Thu, 15 Dec 2016

17:00 - 18:00
L1

Oxford Mathematics Christmas Public Lecture: The Mathematics of Visual Illusions - Ian Stewart SOLD OUT

Ian Stewart
(University of Warwick)
Abstract

Puzzling things happen in human perception when ambiguous or incomplete information is presented to the eyes. Rivalry occurs when two different images, presented one to each eye, lead to alternating percepts, possibly of neither image separately. Illusions, or multistable figures, occur when a single image can be perceived in several ways. The Necker cube is the most famous example. Impossible objects arise when a single image has locally consistent but globally inconsistent geometry. Famous examples are the Penrose triangle and etchings by Maurits Escher.

In this lecture Ian Stewart will demonstrate how these phenomena provide clues about the workings of the visual system, with reference to recent research in the field which has modelled simplified, systematic methods by which the brain can make decisions. In these models a neural network is designed to interpret incoming sensory data in terms of previously learned patterns. Rivalry occurs when different interpretations are confused, and illusions arise when the same data have several interpretations.

The lecture will be non-technical and highly illustrated, with plenty of examples.

Please email @email to register

Fri, 09 Dec 2016

10:00 - 11:00
L2

Towards a drive-through wheel alignment system

Alex Codd
(WheelRight)
Abstract

As part of a suite of products that provide a drive thorough vehicle tyre inspection system the assessment of wheel alignment would be useful to drivers in maintaining their vehicles and reducing tyre wear.  The current method of assessing wheel alignment involves fitting equipment to the tyre and assessment within a garage environment. 

The challenge is to develop a technique that can be used in the roadway with no equipment fitted to the vehicle.  The WheelRight equipment is already capturing images of tyres from both  front and side views.  Pressure sensors in the roadway also allow a tyre pressure footprint to be created.  Using the existing data to interpret the alignment of the wheels on each axle is a preferred way forward.