Fri, 18 Nov 2016

16:00 - 17:00
L1

North meets South Colloquium

James Maynard + Thomas Woolley
(Mathematical Institute, Oxford)
Abstract

Approximate prime numbers -- James Maynard

I will talk about the idea of an 'almost prime' number, and how this can be used to make progress on some famous problems about the primes themselves.

Mathematical biology: An early career retrospective -- Thomas Woolley

No image

Since 2008 Thomas has focused his attention to the application of mathematical techniques to biological problems. Through numerous fruitful collaborations he has been extremely fortunate to work alongside some amazing researchers. But what has he done in the last 8 years? What lessons has he learnt? What knowledge has he produced?

This talk will encompass a brief overview of a range of applications, from animal skin patterns to cellular mechanics, via zombies and Godzilla.

Fri, 18 Nov 2016
14:15
C3

Analogue models of hydraulic fracturing

Finn Box
(University of Oxford)
Abstract

The spreading of a viscous fluid in between a rigid, horizontal substrate and an overlying elastic sheet is presented as a simplified model of the hydraulic fracturing process. In particular, the talk will focus on the case of a permeable substrate for which leak-off arrests the propagation of the fluid and permits the development of a steady state. The different regimes of  gravitationally-driven and elastically-driven flow will be explored, as will the cases of a stiff and flexible sheet, before a discussion of the influence that particles included in the fluid have on the fracture propagation. 

Fri, 18 Nov 2016

13:00 - 14:00
L6

Second Year DPhil Student Talks

Zhenru Wang and Vadim Kaushansky
(Mathematical Institute)
Abstract

Zhenru Wang
Title: Multi-Index Monte Carlo Estimators for a Class of Zakai SPDEs
Abstract:   
We first propose a space-time Multi-Index Monte Carlo (MIMC) estimator for a one-dimensional parabolic SPDE of Zakai type. We compare the computational cost required for a prescribed accuracy with the Multilevel Monte Carlo (MLMC) method of Giles and Reisinger (2012). Then we extend the estimator to a two-dimensional variant of SPDE. The theoretical analysis shows the benefit of using MIMC in high dimensional problems over MLMC methods. Numerical tests confirm these finding empirically.


Vadim Kaushansky
Title: An extended structural default model with jump risk
Abstact:
We consider a structural default model in an interconnected banking network as in Itkin and Lipton (2015), where there are mutual obligations between each pair of banks. We analyse the model numerically for the case of two banks with jumps in their asset value processes. Specifically, we develop a finite difference method for the resulting two-dimensional partial integro-differential equation, and study its stability and consistency. By applying this method, we compute joint and marginal survival probabilities, as well as prices of credit default swaps (CDS) and first-to-default swaps (FTD), Credit and Debt Value Adjustments (CVA and DVA).

 

Thu, 17 Nov 2016
17:30
L6

Some remarks on duality

Robin Knight
((Oxford University))
Abstract

One of many overlaps between logic and topology is duality: Stone duality links Boolean algebras with zero-dimensional compact Hausdorff spaces, and gives a useful topological way of describing certain phenomena in first order logic; and there are generalisations that allow one to study infinitary logics also. We will look at a couple of ways in which this duality theory is useful.'

Thu, 17 Nov 2016
16:00
L6

Correlations of multiplicative functions

Oleksiy Klurman
(University College London)
Abstract


We develop the asymptotic formulas for correlations  
\[ \sum_{n\le x}f_1(P_1(n))f_2(P_2(n))\cdot \dots \cdot f_m(P_m(n))\]

where $f_1,\dots,f_m$ are bounded ``pretentious" multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences: first, we characterize all multiplicative functions $f:\mathbb{N}\to\{-1,+1\}$ with bounded partial sums. This answers a question of Erd{\"o}s from $1957$ in the form conjectured by Tao. Second, we show that if the average of the first divided difference of multiplicative function is zero, then either $f(n)=n^s$ for $\operatorname{Re}(s)<1$ or $|f(n)|$ is small on average. This settles an old conjecture of K\'atai. Third, we discuss applications to the study of sign patterns of $(f(n),f(n+1),f(n+2))$ and $(f(n),f(n+1),f(n+2),f(n+3))$ where $f:\mathbb{N}\to \{-1,1\}$ is a given multiplicative function. If time permits, we discuss multidimensional version of some of the results mentioned above.
 

Thu, 17 Nov 2016

16:00 - 17:30
L4

The existence of densities of BSDEs

Daniel Schwarz
(UCL)
Abstract

We introduce sufficient conditions for the solution of a multi-dimensional, Markovian BSDE to have a density. We show that a system of BSDEs possesses a density if its corresponding semilinear PDE exhibits certain regularity properties, which we verify in the case of several examples.

Thu, 17 Nov 2016

16:00 - 17:00
L3

Modelling Anti-Surfactants and Thixotropic Lubrication

Stephen Wilson
(University of Strathclyde)
Abstract

In the first part of the talk, I will describe a fluid-dynamical model for a "anti-surfactant" solution (such as salt dissolved in water) whose surface tension is an increasing function of bulk solvent concentration. In particular, I will show that this model is consistent with the standard model for surfactants, and predicts a novel instability for anti-surfactants not present for surfactants. Some further details are given in the recent paper by Conn et al. Phys. Rev. E 93 043121 (2016).

 

In the second part of the talk, I will formulate and analyse the governing equations for the flow of a thixotropic or antithixotropic fluid in a slowly varying channel. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter. If time permits, I will seek draw some conclusions relevant to thixotropic flow in porous media. Some further details are given in the forthcoming paper by Pritchard et al. to appear in J Non-Newt. Fluid Mech (2016).

Thu, 17 Nov 2016

14:00 - 15:00
L5

Second order approximation of the MRI signal for single shot parameter assessment

Prof. Rodrigo Platte
(Arizona State University)
Abstract

Most current methods of Magnetic Resonance Imaging (MRI) reconstruction interpret raw signal values as samples of the Fourier transform of the object. Although this is computationally convenient, it neglects relaxation and off–resonance evolution in phase, both of which can occur to significant extent during a typical MRI signal. A more accurate model, known as Parameter Assessment by Recovery from Signal Encoding (PARSE), takes the time evolution of the signal into consideration. This model uses three parameters that depend on tissue properties: transverse magnetization, signal decay rate, and frequency offset from resonance. Two difficulties in recovering an image using this model are the low SNR for long acquisition times in single-shot MRI, and the nonlinear dependence of the signal on the decay rate and frequency offset. In this talk, we address the latter issue by using a second order approximation of the original PARSE model. The linearized model can be solved using convex optimization augmented with well-stablished regularization techniques such as total variation. The sensitivity of the parameters to noise and computational challenges associated with this approximation will be discussed.

Thu, 17 Nov 2016
12:00
L5

Green’s function for elliptic systems: Existence and stochastic bounds

Arianna Giunti
(Max Planck Institute Leipzig)
Abstract
We study the Green function G associated to the operator −∇ · a∇ in Rd, when a = a(x) is a (measurable) bounded and uniformly elliptic coefficient field. An example of De Giorgi implies that, in the case of systems, the existence of a Green’s function is not ensured by such a wide class of coefficient fields a. We give a more general definition of G and show that for every bounded and uniformly elliptic a, such G exists and is unique. In addition, given a stationary ensemble $\langle\cdot\rangle$ on a, we prove optimal decay estimates for $\langle|G|\rangle $ and $\langle|∇G|\rangle$. Under assumptions of quantification of ergodicity for $\langle\cdot\rangle$, we extend these bounds also to higher moments in probability. These results play an important role in the context of quantitative stochastic homogenization for −∇ · a∇. This talk is based on joint works with Peter Bella, Joseph Conlon and Felix Otto.
Thu, 17 Nov 2016
11:00
C5

O-minimality and the Zilber-Pink conjecture for (pure) Shimura varieties

Chris Daw
(Oxford)
Abstract


In this talk, we will explain how the counting theorems of Pila and Wilkie lead to a conditional proof of the aforementioned conjecture. In particular, we will explain how to generalise the work of Habegger and Pila on a product of modular curves. 
Habegger and Pila were able to prove that the Zilber-Pink conjecture holds in such a product if the so-called weak complex Ax and large Galois orbits conjectures are true. In fact, around the same time, Pila and Tsimerman proved a stronger statement than the weak complex Ax conjecture, namely, the Ax-Schanuel conjecture for the $j$-function. We will formulate Ax-Schanuel and large Galois orbits conjectures for general Shimura varieties and attempt to imitate the Habegger-Pila strategy. However, we will encounter an additional difficulty in bounding the height of a pre-special subvariety.

This is joint work with Jinbo Ren.
 

Wed, 16 Nov 2016
15:00
L5

Quantum secure commitments and hash functions

Dominique Unruh
(University of Tartu)
Abstract

Commitment schemes are a fundamental primitive in cryptography. Their security (more precisely the computational binding property) is closely tied to the notion of collision-resistance of hash functions. Classical definitions of binding and collision-resistance turn out too be weaker than expected when used in the quantum setting. We present strengthened notions (collapse-binding commitments and collapsing hash functions), explain why they are "better", and show how they be realized under standard assumptions.

Wed, 16 Nov 2016
11:30
N3.12

Group theory in chemistry

Kieran Calvert
(University of Oxford)
Abstract

I will try to give a brief description of the use of group theory and character theory in chemistry, specifically vibrational spectroscopy. Defining the group associated to a molecule, how one would construct a representation corresponding to such a molecule and the character table associated to this. Then, time permitting, I will go in to the deconstruction of the data from spectroscopy; finding such a group and hence molecule structure. 

Tue, 15 Nov 2016

15:45 - 16:45
L4

The Bayer-Macri map for compact support

Alastair Craw
(Bath)
Abstract

I'll discuss recent joint work with Arend Bayer and Ziyu Zhang in which we define a nef divisor class on moduli spaces of Bridgeland-stable objects in the derived category of coherent sheaves with compact support, generalising earlier work of Bayer and Macri for smooth projective varieties. This work forms part of a programme to study the birational geometry of moduli spaces of Bridgeland-stable objects in the derived category of varieties that need not be smooth and projective.

Tue, 15 Nov 2016
14:30
L6

Forbidden vector-valued intersection

Eoin Long
(Oxford University)
Abstract

Given vectors $V = (v_i: i \in [n]) \in R^D$, we define the $V$-intersection of $A,B \subset [n]$ to be the vector $\sum_{i \in A \cap B} v_i$. In this talk, I will discuss a new, essentially optimal, supersaturation theorem for $V$-intersections, which can be roughly stated as saying that any large family of sets contains many pairs $(A,B)$ with $V$-intersection $w$, for a wide range of $V$ and $w$. A famous theorem of Frankl and Rödl corresponds to the case $D=1$ and all $v_i=1$ of our theorem. The case $D=2$ and $v_i=(1,i)$ solves a conjecture of Kalai.

Joint work with Peter Keevash.

Tue, 15 Nov 2016
14:30
L5

SNIPE for memory-limited PCA with incomplete data: From failure to success

Armin Eftekhari
(University of Oxford)
Abstract


Consider the problem of identifying an unknown subspace S from data with erasures and with limited memory available. To estimate S, suppose we group the measurements into blocks and iteratively update our estimate of S with each new block.

In the first part of this talk, we will discuss why estimating S by computing the "running average" of span of these blocks fails in general. Based on the lessons learned, we then propose SNIPE for memory-limited PCA with incomplete data, useful also for streaming data applications. SNIPE provably converges (linearly) to the true subspace, in the absence of noise and given sufficient measurements, and shows excellent performance in simulations. This is joint work with Laura Balzano and Mike Wakin.
 

Tue, 15 Nov 2016

14:15 - 15:15
L4

Representations of finite groups over self-injective rings

Greg Stevenson
(Bielefeld)
Abstract

 For a group algebra over a self-injective ring
there are two stable categories: the usual one modulo projectives
and a relative one where one works modulo representations
which are free over the coefficient ring.
I'll describe the connection between these two stable categories,
which are "birational" in an appropriate sense.
I'll then make some comments on the specific case
where the coefficient ring is Z/nZ and give a more
precise description of the relative stable category.

Tue, 15 Nov 2016
13:00
C4

Introduction

Barbara Mahler, Nina Otter and Bernadette Stolz.
Abstract

 In the first meeting of the seminar we, and all participants who wish to do so, will each briefly introduce ourselves and our research interests. We will decide future talks and papers to read during this meeting.

Tue, 15 Nov 2016

12:00 - 13:15
L4

Ambitwister Strings

Lionel Mason
Abstract

The talk will review the origins
of ambitwistor strings, and  recent progress in extending them to a
wider variety of theories and loop amplitudes.