Decision problems in one-relation semigroups
Abstract
I will give an overview and introduction to the most important decision problems in combinatorial semigroup theory, including the word problem, and describe attempts to solve a problem that has been open since 1914: the word problem in one-relation semigroups. I will link it with some of my results from formal language theory, as well as recent joint work with I. Foniqi and R. D. Gray (East Anglia) on proving undecidability of certain harder problems, proved by way of passing via one-relator groups.
Universality for transversal Hamilton cycles
Abstract
An interesting twist on classical subgraph containment problems in graph theory is the following: given a graph $H$ and a collection $\{G_1, \dots , G_m\}$ of graphs on a common vertex set $[n]$, what conditions on $G_i$ guarantee a copy of $H$ using at most one edge from each $G_i$? Such a subgraph is called transversal, and the above problem is closely related to the study of temporal graphs in Network Theory. In 2020 Joos and Kim showed that if $\delta(G_i)\geq n/2$, the collection contains a transversal Hamilton cycle. We improve on their result by showing that it actually contains every transversal Hamilton cycle if $\delta(G_i)\geq (1/2+o(1))n$. That is, for every function $\chi:[n]\to[m]$, there is a Hamilton cycle whose $i$-th edge belongs to $G_{\chi(i)}$.
This is joint work with Candida Bowtell, Patrick Morris and Katherine Staden.
13:00
SUPERTRANSLATIONS, ANGULAR MOMENTUM, AND COVARIANCE IN 4D ASYMPTOTICALLY FLAT SPACE
Abstract
11:00
Renormalised Amperean area for 2D Higgs-Yang-Mills Field
Abstract
The objective of the talk is to present elements of Euclidean Quantum Field Theory and of the Symanzik's polymer representation for a model which includes an interaction with a magnetic field. We will explain how the problem of constructing such an EQFT can be translated into the problem of renormalising the Amperean area of a planar Brownian motion, an object that we will introduce during the talk. No prerequisite knowledge of the topic is expected.
Based on http://perso.ens-lyon.fr/isao.sauzedde/square_field3_3.pdf
16:00
Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation
Abstract
Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.
15:30
Symmetries of the free-factor complex and commensurator rigidity for Aut(F)
Abstract
A commensuration of a group G is an isomorphism between finite-index subgroups of G. Equivalence classes of such maps form a group, whose importance first emerged in the work of Margulis on the rigidity and arithmeticity of lattices in semisimple Lie groups. Drawing motivation from this classical setting and from the study of mapping class groups of surfaces, I shall explain why, when N is at least 3, the group of automorphisms of the free group of rank N is its own abstract commensurator. Similar results hold for certain subgroups of Aut(F_N). These results are the outcome of a long-running project with Ric Wade. An important element in the proof is a non-abelian analogue of the Fundamental Theorem of Projective Geometry in which projective subspaces are replaced by the free factors of a free group; this is the content of a long-running project with Mladen Bestvina.
15:30
Scaling limits for planar aggregation with subcritical fluctuations
Abstract
Planar random growth processes occur widely in the physical world. Examples include diffusion-limited aggregation (DLA) for mineral deposition and the Eden model for biological cell growth. One approach to mathematically modelling such processes is to represent the randomly growing clusters as compositions of conformal mappings. In 1998, Hastings and Levitov proposed one such family of models, which includes versions of the physical processes described above. An intriguing property of their model is a conjectured phase transition between models that converge to growing disks, and 'turbulent' non-disk like models. In this talk I will describe a natural generalisation of the Hastings-Levitov family in which the location of each successive particle is distributed according to the density of harmonic measure on the cluster boundary, raised to some power. In recent joint work with Norris and Silvestri, we show that when this power lies within a particular range, the macroscopic shape of the cluster converges to a disk, but that as the power approaches the edge of this range the fluctuations approach a critical point, which is a limit of stability. This phase transition in fluctuations can be interpreted as the beginnings of a macroscopic phase transition from disks to non-disks analogous to that present in the Hastings-Levitov family.
14:15
Verlinde formulas on surfaces
Abstract
Let $S$ be a smooth projective surface with $p_g>0$ and $H^1(S,{\mathbb Z})=0$.
We consider the moduli spaces $M=M_S^H(r,c_1,c_2)$ of $H$-semistable sheaves on $S$ of rank $r$ and
with Chern classes $c_1,c_2$. Associated a suitable class $v$ the Grothendieck group of vector bundles
on $S$ there is a deteminant line bundle $\lambda(v)\in Pic(M)$, and also a tautological sheaf $\tau(v)$ on $M$.
In this talk we derive a conjectural generating function for the virtual Verlinde numbers, i.e. the virtual holomorphic
Euler characteristics of all determinant bundles $\lambda(v)$ on M, and for Segre invariants associated to $\tau(v)$ .
The argument is based on conjectural blowup formulas and a virtual version of Le Potier's strange duality.
Time permitting we also sketch a common refinement of these two conjectures, and their proof for Hilbert schemes of points.
Randomly pivoted Cholesky
Abstract
This talk describes a simple but powerful randomized procedure for adaptively picking the pivot columns. This algorithm, randomly pivoted Cholesky (RPC), provably achieves near-optimal approximation guarantees. Moreover, in experiments, RPC matches or improves on the performance of alternative algorithms for low-rank psd approximation.
Cholesky died in 1918 from wounds suffered in battle. In 1924, Cholesky's colleague, Commandant Benoit, published his manuscript. One century later, a modern adaptation of Cholesky's method still yields state-of-the-art performance for problems in scientific machine learning.
Fluid flow and elastic flexure – mathematical modelling of the transient response of ice sheets in a changing climate CANCELLED
Jerome A. Neufeld
Professor of Earth and Planetary Fluid Dynamics
Centre for Environmental and Industrial Flows
Department of Earth Sciences
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Research interests: The research in the Earth and Planetary Fluid Dynamics group focuses on using mathematical models and laboratory experiments to understand the fluid behaviour of the Earth and other planetary bodies. Current research interests include the consequences of subglacial hydrology on supraglacial lake drainage and the tidal modulation of ice streams, the solidification of magma oceans and the early generation of magnetic fields on planetary bodies, the erosive dynamics of idealised river systems, the emplacement and solidification of magmatic flows, viscous tectonic mountain building, and the general fluid dynamics of geological carbon storage.
Abstract
The response of the Greenland and Antarctic ice sheets to a changing climate is one of the largest sources of uncertainty in future sea level predictions. The behaviour of the subglacial environment, where ice meets hard rock or soft sediment, is a key determinant in the flux of ice towards the ocean, and hence the loss of ice over time. Predicting how ice sheets respond on a range of timescales brings together mathematical models of the elastic and viscous response of the ice, subglacial sediment and water and is a rich playground where the simplified models of the contact between ice, rock and ocean can shed light on very large scale questions. In this talk we’ll see how these simplified models can make sense of a variety of field and laboratory data in order to understand the dynamical phenomena controlling the transient response of large ice sheets.
16:00
Departmental Colloquium: Fluid flow and elastic flexure – mathematical modelling of the transient response of ice sheets in a changing climate (Jerome Neufield) CANCELLED
Abstract
CANCELLED DUE TO ILLNESS
The response of the Greenland and Antarctic ice sheets to a changing climate is one of the largest sources of uncertainty in future sea level predictions. The behaviour of the subglacial environment, where ice meets hard rock or soft sediment, is a key determinant in the flux of ice towards the ocean, and hence the loss of ice over time. Predicting how ice sheets respond on a range of timescales brings together mathematical models of the elastic and viscous response of the ice, subglacial sediment and water and is a rich playground where the simplified models of the contact between ice, rock and ocean can shed light on very large scale questions. In this talk we’ll see how these simplified models can make sense of a variety of field and laboratory data in order to understand the dynamical phenomena controlling the transient response of large ice sheets.
Morse Theory for Group Presentations and Applications
Abstract
Discrete Morse theory serves as a combinatorial tool for simplifying the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will introduce a refinement of this theory that not only ensures homotopy equivalence with the simplified CW-complex but also guarantees a Whitehead simple homotopy equivalence. Furthermore, it offers an explicit description of the construction of the simplified Morse complex and provides bounds on the dimension of the complexes involved in the Whitehead deformation.
This refined approach establishes a suitable theoretical framework for addressing various problems in combinatorial group theory and topological data analysis. I will show applications of this technique to the Andrews-Curtis conjecture and computational methods for inferring the fundamental group of point clouds.
This talk is based on the article: Fernandez, X. Morse theory for group presentations. Trans. Amer. Math. Soc. 377 (2024), 2495-2523.
Modeling the electromechanics of aerial electroreception
Abstract
Symmetry, topology and entanglement in the chiral clock family
Abstract
Global symmetries greatly enrich the phase diagram of quantum many-body systems. As well as symmetry-breaking phases, symmetry-protected topological (SPT) phases have symmetric ground states that cannot be connected to a trivial state without a phase transition. There can also be symmetry-enriched critical points between these phases of matter. I will demonstrate these phenomena in phase diagrams constructed using the N-state chiral clock family of spin chains. [Based on joint work with Paul Fendley and Abhishodh Prakash.]
Hyperbolic intersection arrangements
Abstract
Choose your favourite connected graph $\Delta$ and shade a subset $J$ of its vertices. The intersection arrangement associated to the data $(\Delta, J)$ is a collection of real hyperplanes in dimension $|Jc|$, first defined by Iyama and Wemyss. This construction involves taking the classical Coxeter arrangement coming from $\Delta$ and then setting all variables indexed by $J$ to be zero. It turns out that for many choices of $J$ the chambers of the intersection arrangement admit a nice combinatorial description, along with a wall crossing rule to pass between them. I will start by making all this precise before discussing my work to classify tilings of the hyperbolic plane arising as intersection arrangements. This has applications to local notions of stability conditions using the tilting theory of contracted preprojective algebras.
18:00
Frontiers in Quantitative Finance: Professor Steve Heston: Model-free Hedging of Option Variance and Skewness
Please register via our TicketSource page.
Abstract
Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.
Abstract
This paper parsimoniously generalizes the VIX variance index by constructing model-free factor portfolios that replicate skewness and higher moments. It then develops an infinite series to replicate option payoffs in terms of the stock, bond, and factor returns. The truncated series offers new formulas that generalize the Black-Scholes formula to hedge variance and skewness risk.
About the speaker
Steve Heston is Professor of Finance at the University of Maryland. He is known for his pioneering work on the pricing of options with stochastic volatility.
Steve graduated with a double major in Mathematics and Economics from the University of Maryland, College Park in 1983, an MBA in 1985 followed by a PhD in Finance in 1990. He has held previous faculty positions at Yale, Columbia, Washington University, and the University of Auckland in New Zealand and worked in the private sector with Goldman Sachs in Fixed Income Arbitrage and in Asset Management Quantitative Equities.
Model theory of limits
Abstract
Does the limit construction for inverse systems of first-order structures preserve elementary equivalence? I will give sufficient conditions for when this is the case. Using Karp's theorem, we explain the connection between a syntactic and formal-semantic approach to inverse limits of structures. We use this to give a simple proof of van den Dries' AKE theorem (in ZFC), a general AKE theorem for mixed characteristic henselian valued fields with no assumptions on ramification. We also recall a seemingly forgotten result of Feferman, that can be interpreted as a "saturated" AKE theorem in positive characteristic: given two elementarily equivalent $\aleph_1$-saturated fields $k$ and $k'$, the formal power series rings $k[[t]]$ and $k'[[t]]$ are elementarily equivalent as well. We thus hope to popularise some ideas from categorical logic.
16:30
The invariant subspace problem
Abstract
16:00
Intersections of geodesics on modular curves and Hilbert modular forms
Abstract
The 12th of Hilbert's 23 problems posed in 1900 asks for an explicit description of abelian extensions of a given base field. Over the rationals, this is given by the exponential function, and over imaginary quadratic fields, by meromorphic functions on the complex upper half plane. Darmon and Vonk's theory of rigid meromorphic cocycles, or "RM theory", includes conjectures giving a $p$-adic solution over real quadratic fields. These turn out to be closely linked to purely topological questions about intersections of geodesics in the upper half plane, and to $p$-adic deformations of Hilbert modular forms. I will explain an extension of results of Darmon, Pozzi and Vonk proving some of these conjectures, and some ongoing work concerning analogous results on Shimura curves.
14:00
Black Hole Microstate Counting: AdS
Abstract
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
Structure-preserving hybrid finite element methods
Abstract
The classical finite element method uses piecewise-polynomial function spaces satisfying continuity and boundary conditions. Hybrid finite element methods, by contrast, drop these continuity and boundary conditions from the function spaces and instead enforce them weakly using Lagrange multipliers. The hybrid approach has several numerical and implementational advantages, which have been studied over the last few decades.
In this talk, we show how the hybrid perspective has yielded new insights—and new methods—in structure-preserving numerical PDEs. These include multisymplectic methods for Hamiltonian PDEs, charge-conserving methods for the Maxwell and Yang-Mills equations, and hybrid methods in finite element exterior calculus.
Isolating internal waves using on-the-fly Lagrangian filtering in numerical simulations
Dr Lois Baker is the Flora Philip Fellow and EPSRC National Fellow in Fluid Dynamicsa in the School of Mathematics at the University of Edinburgh. Her research involves using mathematical and numerical models to understand oceanic fluid dynamics. Baker is particularly interested in the interactions of internal waves and submesoscale vortices that are generated in the deep and upper ocean.
Abstract
In geophysical and astrophysical flows, we are often interested in understanding the impact of internal waves on the non-wavelike flow. For example, oceanic internal waves generated at the surface and the seafloor transfer energy from the large scale flow to dissipative scales, thereby influencing the global ocean state. A primary challenge in the study of wave-flow interactions is how to separate these processes – since waves and non-wavelike flows can vary on similar spatial and temporal scales in the Eulerian frame. However, in a Lagrangian flow-following frame, temporal filtering offers a convenient way to isolate waves. Here, I will discuss a recently developed method for evolving Lagrangian mean fields alongside the governing equations in a numerical simulation, and extend this theory to allow effective filtering of waves from non-wavelike processes.
12:00
Volume above distance below
Abstract
Given a pair of metric tensors gj ≥ g0 on a Riemannian manifold, M, it is well known that Volj(M)≥Vol0(M). Furthermore, the volumes are equal if and only if the metric tensors are the same, gj=g0. Here we prove that if for a sequence gj, we have gj≥g0, Volj(M)→Vol0(M) and diam(Mj) ≤ D then (M,gj) converges to (M,g0) in the volume preserving intrinsic flat sense. The previous result will then be applied to prove stability of a class of tori.
This talk is based on joint works of myself with: Allen and Sormani (https://arxiv.org/abs/2003.01172), and Cabrera Pacheco and Ketterer (https://arxiv.org/abs/1902.03458).