Mon, 19 Jun 2023
13:00
L3

Evaluating one-loop string amplitudes

Sebastian Mizera
(IAS)
Abstract

Scattering amplitudes in string theory are written as formal integrals of correlations functions over the moduli space of punctured Riemann surfaces. It's well-known, albeit not often emphasized, that this prescription is only approximately correct because of the ambiguities in defining the integration domain. In this talk, we propose a resolution of this problem for one-loop open-string amplitudes and present their first evaluation at finite energy and scattering angle. Our method involves a deformation of the integration contour over the modular parameter to a fractal contour introduced by Rademacher in the context of analytic number theory. This procedure leads to explicit and practical formulas for the one-loop planar and non-planar type-I superstring four-point amplitudes, amenable to numerical evaluation. We plot the amplitudes as a function of the Mandelstam invariants and directly verify long-standing conjectures about their behavior at high energies.

Fri, 16 Jun 2023

15:00 - 16:00
Lecture room 5

Topology of Artificial Neuron Activations in Deep Learning

Bei Wang
Abstract

Deep convolutional neural networks such as GoogLeNet and ResNet have become ubiquitous in image classification tasks, whereas
transformer-based language models such as BERT and its variants have found widespread use in natural language processing. In this talk, I
will discuss recent efforts in exploring the topology of artificial neuron activations in deep learning, from images to word embeddings.
First, I will discuss the topology of convolutional neural network activations, which provides semantic insight into how these models
organize hierarchical class knowledge at each layer. Second, I will discuss the topology of word embeddings from transformer-based models.
I will explore the topological changes of word embeddings during the fine-tuning process of various models and discover model confusions in
the embedding spaces. If time permits, I will discuss on-going work in studying the topology of neural activations under adversarial attacks.
 

Fri, 16 Jun 2023

14:00 - 15:00
L4

Lakes, rivers… and waterfalls? Modelling Antarctic Surface Hydrology

Sammie Buzzard
(University of Cardiff)
Abstract

The formation of surface meltwater has been linked with the disintegration of many ice shelves in the Antarctic Peninsula over the last several decades. Despite the importance of surface meltwater production and transport to ice shelf stability, knowledge of these processes is still lacking. Understanding the surface hydrology of ice shelves is an essential first step to reliably project future sea level rise from ice-sheet melt.

In order to better understand the processes driving meltwater distribution on ice shelves, we present the first comprehensive model of surface hydrology to be developed for Antarctic ice shelves, enabling us to incorporate key processes such as the lateral transport of surface meltwater. Recent observations suggest that surface hydrology processes on ice shelves are more complex than previously thought, and that processes such as lateral routing of meltwater across ice shelves, ice shelf flexure and surface debris all play a role in the location and influence of meltwater. Our model allows us to account for these and is calibrated and validated through both remote sensing and field observations.

Fri, 16 Jun 2023

14:00 - 15:00
L3

Positional information theory

Prof Karen Page
(Department of Mathematics University College London)
Abstract

We study the positional information conferred by the morphogens Sonic Hedgehog and BMP in neural tube patterning. We use the mathematics of information theory to quantify the information that cells use to decide their fate. We study the encoding, recoding and decoding that take place as the morphogen gradient is formed, triggers a nuclear response and determines cell fates using a gene regulatory network.

Thu, 15 Jun 2023
17:00
L4

Beyond the Fontaine-Wintenberger theorem

Konstantinos Kartas
(IMJ-PRG/Sorbonne Université)
Abstract

Given a perfectoid field, we find an elementary extension and a henselian defectless valuation on it, whose value group is divisible and whose residue field is an elementary extension of the tilt. This specializes to the almost purity theorem over perfectoid valuation rings and Fontaine-Wintenberger. Along the way, we prove an Ax-Kochen/Ershov principle for certain deeply ramified fields, which also uncovers some new model-theoretic phenomena in positive characteristic. Notably, we get that the perfect hull of Fp(t)^h is an elementary substructure of the perfect hull of Fp((t)). Joint work with Franziska Jahnke.

Thu, 15 Jun 2023
16:00
L5

Computations, heuristics and analytic number theory

Andrew Granville
(Université de Montréal)
Abstract

Abstract. I will talk about projects in which we combine heuristics with computational data to develop a theory in problems where it was previously hard to be confident of the guesses that there are in the literature.

 

1/ "Speculations about the number of primes in fast growing sequences". Starting from studying the distribution of primes in sequences like $2^n-3$, Jon Grantham and I have been developing a heuristic to guess at the frequency of prime values in arbitrary linear recurrence sequences in the integers, backed by calculations.

 

If there is enough time I will then talk about:

 

2/ "The spectrum of the $k$th roots of unity for $k>2$, and beyond".  There are many questions in analytic number theory which revolve around the "spectrum", the possible mean values of multiplicative functions supported on the $k$th roots of unity. Twenty years ago Soundararajan and I determined the spectrum when $k=2$, and gave some weak partial results for $k>2$, the various complex spectra.  Kevin Church and I have been tweaking MATLAB's package on differential delay equations to help us to develop a heuristic theory of these spectra for $k>2$, allowing us to (reasonably?) guess at the answers to some of the central questions.

Thu, 15 Jun 2023

16:00 - 17:00
L4

Graph Neural Networks for Forecasting Realized Volatility with Nonlinear Spillover Effects

Stacy Pu
Abstract

We propose a novel methodology for modeling and forecasting multivariate realized volatilities using graph neural networks. This approach extends the work of Zhang et al. [2022] (Graph-based methods for forecasting realized covariances) and explicitly incorporates the spillover effects from multi-hop neighbors and nonlinear relationships into the volatility forecasts. Our findings provide strong evidence that the information from multi-hop neighbors does not offer a clear advantage in terms of predictive accuracy. However, modeling the nonlinear spillover effects significantly enhances the forecasting accuracy of realized volatilities over up to one month. Our model is flexible and allows for training with different loss functions, and the results generally suggest that using Quasi-likelihood as the training loss can significantly improve the model performance, compared to the commonly-used mean squared error. A comprehensive series of evaluation tests and alternative model specifications confirm the robustness of our results.

Paper available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375165

Thu, 15 Jun 2023

14:00 - 15:00
Lecture Room 3

26 Years at Oxford

Nick Trefethen
(Oxford University)
Abstract

I will reflect on my time as Professor of Numerical Analysis.

Thu, 15 Jun 2023
12:00
L1

Reconciling ecology and evolutionary game theory: or ‘when not to think cooperation’

Corina Tarnita
(Princeton University)
Abstract

I’m excited to share with everyone some new, unpublished work that we are just in the process of wrapping up and could use everyone’s reactions. It is a reconciliation of evolutionary game theory and ecological dynamics that I have wrestled with since I moved from an evolution program into an ecology-heavy department. It always seemed like, depending on the problem I was thinking about, I had to change my perspective and approach it as either an evolutionary game theorist, or an ecologist; and yet I had this nagging feeling that, at its core, the problem was often one and the same, and therefore one theoretical framework should suffice. So when should one write down an n-type replicator equation and when should one write down an n-species Lotka-Volterra system; and what does it mean mathematically and biologically when one has made such a choice? In the process of reconciling, I also got a deeper appreciation of what is and is not a proper game, such as a Prisoner’s Dilemma. These findings can help shed light on previously puzzling empirical findings.

Wed, 14 Jun 2023
16:00
L6

Asymptotic dimension of groups

Panagiotis Tselekidis
(University of Oxford)
Abstract

Asymptotic dimension was introduced by Gromov as an invariant of finitely generated groups. It can be shown that if two metric spaces are quasi-isometric then they have the same asymptotic dimension. In 1998, the asymptotic dimension achieved particular prominence in geometric group theory after a paper of Guoliang Yu, which proved the Novikov conjecture for groups with finite asymptotic dimension. Unfortunately, not all finitely generated groups have finite asymptotic dimension. 

In this talk, we will introduce some basic tools to compute the asymptotic dimension of groups. We will also find upper bounds for the asymptotic dimension of a few well-known classes of finitely generated groups, such as hyperbolic groups, and if time permits, we will see why one-relator groups have asymptotic dimension at most two.

Tue, 13 Jun 2023
16:00
L5

Revisiting the Euler system for imaginary quadratic fields

Christopher Skinner
(Princeton University)
Abstract

I will explain how to construct an Euler system for imaginary quadratic fields using Eisenstein series and their cohomology classes. This illustrates a template for a construction that should yield many new Euler systems.

Tue, 13 Jun 2023

16:00 - 17:00
C3

Cohomological obstructions to lifting properties for full C*-algebras of property (T) groups

Abstract

A C*-algebra has the lifting property (LP) if any unital completely positive map into a quotient C*-algebra admits a completely positive lift. The local lifting property (LLP), introduced by Kirchberg in the early 1990s, is a weaker, local version of the LP.  I will present a method, based on non-vanishing of second cohomology groups, for proving the failure of lifting properties for full C*-algebras of countable groups with (relative) property (T). This allows us to derive that the full C*-algebras of the groups $Z^2\rtimes SL_2(Z)$ and $SL_n(Z)$, for n>2, do not have the LLP. The same method allows us to prove that the full C*-algebras of a large class of groups with property (T), including those admitting a probability measure preserving action with non-vanishing second real-valued cohomology, do not have the LP.  In a different direction, we prove that the full C*-algebras of any non-finitely presented groups with property (T) do not have the LP. Time permitting, I will also discuss a connection with the notion of Hilbert-Schmidt stability for countable groups. This is based on a joint work with Pieter Spaas and Matthew Wiersma.

Tue, 13 Jun 2023
15:30
L1

Computing vertical Vafa-Witten invariants

Noah Arbesfeld
(Imperial College, London)
Abstract

I'll present a computation in the algebraic approach to Vafa-Witten invariants of projective surfaces, as introduced by Tanaka-Thomas. The invariants are defined by integration over moduli spaces of stable Higgs pairs on surfaces and are formed from contributions of components. The physical notion of S-duality translates to conjectural symmetries between these contributions.  One component, the "vertical" component, is a nested Hilbert scheme on a surface. I'll explain work in preparation with M. Kool and T. Laarakker in which we express invariants of this component in terms of a certain quiver variety, the instanton moduli space of torsion-free framed sheaves on $\mathbb{P}^2$. Using a recent identity of Kuhn-Leigh-Tanaka, we deduce constraints on Vafa-Witten invariants conjectured by Göttsche-Kool-Laarakker. One consequence is a formula for the contribution of the vertical component to refined Vafa-Witten invariants in rank 2.

Tue, 13 Jun 2023

15:00 - 16:00
L4

Surface subgroups, virtual homology and finite quotients

Jonathan Fruchter
Abstract

We begin with a seemingly simple question: how can one distinguish a surface group from other cyclic amalgamations of two free groups? This question will prompt a (geometrically flavoured) investigation of virtual homological properties of graphs of free groups amalgamated along cyclic edge groups, where surface subgroups play a key role. 

We next turn to study limit groups and residually free groups through their finite quotients, and apply our findings to the study of profinite rigidity within these classes of groups. In particular, we will sketch out why a direct product of free and surface groups cannot have the same finite quotients as any other finitely presented residually free group.

If time permits, we will discuss other possible characterizations of surface groups among limit groups. The talk is based on joint work with Ismael Morales.

 

Tue, 13 Jun 2023

15:00 - 17:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
(Oxford University)
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_2.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Tue, 13 Jun 2023
14:30
L3

Approximating Functions of Sparse Matrices using Matrix-vector Products

Taejun Park
(University of Oxford)
Abstract

The computation of matrix function is an important task appearing in many areas of scientific computing. We propose two algorithms, one for banded matrices and the other for general sparse matrices that approximate f(A) using matrix-vector products only. Our algorithms are inspired by the decay bound for the entries of f(A) when A is banded or sparse. We show its exponential convergence when A is banded or sufficiently sparse and we demonstrate its performance using numerical experiments.

Tue, 13 Jun 2023

14:00 - 15:00
L5

A Ramsey Characterisation of Eventually Periodic Words

Maria Ivan
(University of Cambridge)
Abstract

A factorisation $x=u_1u_2\cdots$ of an infinite word $x$ on alphabet $X$ is called ‘super-monochromatic’, for a given colouring of the finite words $X^{\ast}$ on alphabet $X$, if each word $u_{k_1}u_{k_2}\cdots u_{k_n}$, where $k_1<\cdots<k_n$, is the same colour. A direct application of Hindman’s theorem shows that if $x$ is eventually periodic, then for every finite colouring of $X^{\ast}$, there exist a suffix of $x$ that admits a super-monochromatic factorisation. What about the converse?

In this talk we show that the converse does indeed hold: thus a word $x$ is eventually periodic if and only if for every finite colouring of $X^{\ast}$ there is a suffix of $x$ having a super-monochromatic factorisation. This has been a conjecture in the community for some time. Our main tool is a Ramsey result about alternating sums. This provides a strong link between Ramsey theory and the combinatorics of infinite words.

Joint work with Imre Leader and Luca Q. Zamboni

Tue, 13 Jun 2023
14:00
L3

Constructing Structure-Preserving Timesteppers via Finite Elements in Time

Boris Andrews
(University of Oxford)
Abstract

For many stationary-state PDEs, solutions can be shown to satisfy certain key identities or structures, with physical interpretations such as the dissipation of energy. By reformulating these systems in terms of new auxiliary functions, finite-element models can ensure these structures also hold exactly for the numerical solutions. This approach is known to improve the solutions' accuracy and reliability.

In this talk, we extend this auxiliary function approach to the transient case through a finite-element-in-time interpretation. This allows us to develop novel structure-preserving timesteppers for various transient problems, including the Navier–Stokes and MHD equations, up to arbitrary order in time.

 

Tue, 13 Jun 2023

14:00 - 15:00
L4

Correspondences of affine Hecke algebras in the Langlands program

Anne-Marie Aubert
(Mathematics Institute of Jussieu-Paris Left Bank, Sorbonne University)
Abstract

The irreducible smooth representations of p-adic reductive groups and the enhanced Langlands parameters of these latter can both be partitioned into series indexed by "cuspidal data". On the representation side, cuspidality refers to supercuspidal representations of Levi subgroups, while on the Galois side, it refers to "cuspidal unipotent pairs", as introduced by Lusztig, in certain subgroups of the Langlands dual groups.

In addition, on both sides, the elements in a given series are in bijection with the simple modules of a generalized affine Hecke algebra. 

The cuspidal data on one side are expected to be in bijection with the cuspidal data on the other side. We will formulate conditions on this bijection that will guarantee the existence of a bijection between the simple modules of the attached generalized affine Hecke algebras. For the exceptional group of type G_2 and for all pure inner forms of quasi-split classical groups, the Hecke algebras are actually isomorphic.

Tue, 13 Jun 2023
12:30
C3

Hydrocephalus shunt simulations

Lizzi Hayman
Abstract

Hydrocephalus is a serious medical condition which causes an excess of cerebrospinal fluid (CSF) to build up within the brain. A common treatment for congenital hydrocephalus is to implant a permanent drainage shunt, removing excess CSF to the stomach where it can be safely cleared. However, this treatment carries the risk of vascular brain tissues such as the Choroid Plexus (CP) being dragged into the shunt during drainage, causing it to block, and also preventing the shunt from being easily replaced. In this talk I present results from our fluid-structure interaction model which simulates the deflection of the CP during the operation of the hydrocephalus shunt. We seek to improve the shunt component by optimising the geometry with respect to CP deflection.

Tue, 13 Jun 2023

12:00 - 13:15
L3

Uncovering the Structure of the ε Expansion

Andreas Stergiou
(Kings College London)
Abstract

The ε expansion was invented more than 50 years ago and has been used extensively ever since to study aspects of renormalization group flows and critical phenomena. Its most famous applications are found in theories involving scalar fields in 4−ε dimensions. In this talk, we will discuss the structure of the ε expansion and the fixed points that can be obtained within it. We will mostly focus on scalar theories, but we will also discuss theories with fermions as well as line defects. Our motivation is based on the goal of classifying conformal field theories in d=3 dimensions. We will describe recently discovered universal constraints obtained within the framework of the ε expansion and show that a “heavy handed" quest for fixed points yields a plethora of new ones. These fixed points reveal aspects of the structure of the ε expansion and suggest that a classification of conformal field theories in d=3 is likely to be highly non-trivial.

Mon, 12 Jun 2023
17:15
L3

Evaluating one-loop string amplitudes

Sebastian Mizera
(IAS)
Abstract

Scattering amplitudes in string theory are written as formal integrals of correlations functions over the moduli space of punctured Riemann surfaces. It's well-known, albeit not often emphasized, that this prescription is only approximately correct because of the ambiguities in defining the integration domain. In this talk, we propose a resolution of this problem for one-loop open-string amplitudes and present their first evaluation at finite energy and scattering angle. Our method involves a deformation of the integration contour over the modular parameter to a fractal contour introduced by Rademacher in the context of analytic number theory. This procedure leads to explicit and practical formulas for the one-loop planar and non-planar type-I superstring four-point amplitudes, amenable to numerical evaluation. We plot the amplitudes as a function of the Mandelstam invariants and directly verify long-standing conjectures about their behavior at high energies.

Mon, 12 Jun 2023

16:30 - 17:30
L4

Breaking glass optimally and Minkowski's problem for polytopes

Jian-Guo Liu
(Duke University)
Abstract
Motivated by a study of least-action incompressible flows, we study all the ways that a given convex body in Euclidean space can break into countably many pieces that move away from each other rigidly at constant velocity, following geodesic motions in the sense of optimal transport theory. These we classify in terms of a countable version of Minkowski's geometric problem of determining convex polytopes by their face areas and normals. Illustrations involve various intriguing examples both fractal and paradoxical, including Apollonian packings and other types of full packings by smooth balls.
Mon, 12 Jun 2023
16:00
L1

Departmental Colloquium

George Lusztig
(Massachusetts Institute of Technology)
Further Information

George Lusztig is the Abdun-Nur Professor of Mathematics. He joined the MIT mathematics faculty in 1978 following a professorship appointment at the University of Warwick, 1974-77. He was appointed Norbert Wiener Professor at MIT 1999-2009.

Lusztig graduated from the University of Bucharest in 1968, and received both the M.A. and Ph.D. from Princeton University in 1971 under the direction of Michael Atiyah and William Browder. Professor Lusztig works on geometric representation theory and algebraic groups. He has received numerous research distinctions, including the Berwick Prize of the London Mathematical Society (1977), the AMS Cole Prize in Algebra (1985), and the Brouwer Medal of the Dutch Mathematical Society (1999), and the AMS Leroy P. Steele Prize for Lifetime Achievement (2008), "for entirely reshaping representation theory, and in the process changing much of mathematics."

Professor Lusztig is a Fellow of the Royal Society (1983), Fellow of the American Academy of Arts & Sciences (1991), and Member of the National Academy of Sciences (1992). He was the recipient of the Shaw Prize (2014) and the Wolf Prize (2022).

Mon, 12 Jun 2023
16:00
C3

Probabilistic aspects of the Riemann zeta function

Khalid Younis
(University of Warwick)
Abstract

A central topic of study in analytic number theory is the behaviour of the Riemann zeta function. Many theorems and conjectures in this area are closely connected to concepts from probability theory. In this talk, we will discuss several results on the typical size of the zeta function on the critical line, over different scales. Along the way, we will see the role that is played by some probabilistic phenomena, such as the central limit theorem and multiplicative chaos.

Mon, 12 Jun 2023

16:00 - 17:00
L1

Fourier transform as a triangular matrix

George Lusztig
(MIT)
Abstract

Let $V$ be a finite dimensional vector space over the field with two elements with a given nondegenerate symplectic form. Let $[V]$ be the vector space of complex valued functions on $V$ and let $[V]_{\mathbb Z}$ be the subgroup of $[V]$ consisting of integer valued functions. We show that there exists a Z-basis of $[V]_{\mathbb Z}$ consisting of characteristic functions of certain explicit isotropic subspaces of $V$ such that the matrix of the Fourier transform from $[V]$ to $[V]$ with respect to this basis is triangular. This continues the tradition started by Hermite who described eigenvectors for the Fourier transform over real numbers.

Mon, 12 Jun 2023
15:30
L5

On the Dualizability of Fusion 2-Categories

Thibault Decoppet
Abstract

Fusion 2-categories were introduced by Douglas and Reutter so as to define a state-sum invariant of 4-manifolds. Categorifying a result of Douglas, Schommer-Pries and Snyder, it was conjectured that, over an algebraically closed field of characteristic zero, every fusion 2-category is a fully dualizable object in an appropriate symmetric monoidal 4-category. I will sketch a proof of this conjecture, which will proceed by studying, and in fact classifying, the Morita equivalence classes of fusion 2-categories. In particular, by appealing to the cobordism hypothesis, we find that every fusion 2-category yields a fully extended framed 4D TQFT. I will explain how these theories are related to the ones constructed using braided fusion 1-categories by Brochier, Jordan, and Snyder.

Mon, 12 Jun 2023

15:30 - 16:30
L3

On the multi-indices approach to path-wise stochastic analysis

Lorenzo Zambotti
Abstract

Recently Linares-Otto-Tempelmayr have unveiled a very interesting algebraic structure which allows to define a new class of rough paths/regularity structures, with associated applications to stochastic PDEs or ODEs. This approach does not consider trees as combinatorial tools but their fertility, namely the function which associates to each integer k the number of vertices in the tree with exactly k children. In a joint work with J-D Jacques we have studied this algebraic structure and shown that it is related with a general and simple class of so-called post-Lie algebras. The construction has remarkable properties and I will try to present them in the simplest possible way.

Mon, 12 Jun 2023
14:15
L1

Holographic description of code CFTs

Anatoly Dymarsky
(Kentucky)
Abstract

Recently, a relation was introduced connecting codes of various types with the space of abelian (Narain) 2d CFTs. We extend this relation to provide holographic description of code CFTs in terms of abelian Chern-Simons theory in the bulk. For codes over the alphabet Z_p corresponding bulk theory is, schematically, U(1)_p times U(1)_{-p} where p stands for the level. Furthermore, CFT partition function averaged over all code theories for the codes of a given type is holographically given by the Chern-Simons partition function summed over all possible 3d geometries. This provides an explicit and controllable example of holographic correspondence where a finite ensemble of CFTs is dual to "topological/CS gravity" in the bulk. The parameter p controls the size of the ensemble and "how topological" the bulk theory is. Say, for p=1 any given Narain CFT is described holographically in terms of U(1)_1^n times U(1)_{-1}^n Chern-Simons, which does not distinguish between different 3d geometries (and hence can be evaluated on any of them). When p approaches infinity, the ensemble of code theories covers the whole Narain moduli space with the bulk theory becoming "U(1)-gravity" proposed by Maloney-Witten and Afkhami-Jeddi et al.

Mon, 12 Jun 2023
14:15
L4

Resolutions of finite quotient singularities and quiver varieties

Steven Rayan
(quanTA Centre / University of Saskatchewan)
Abstract

Finite quotient singularities have a long history in mathematics, intertwining algebraic geometry, hyperkähler geometry, representation theory, and integrable systems.  I will highlight the correspondences at play here and how they culminate in Nakajima quiver varieties, which continue to attract interest in geometric representation theory and physics.  I will motivate some recent work of G. Bellamy, A. Craw, T. Schedler, H. Weiss, and myself in which we show that, remarkably, all of the resolutions of a particular finite quotient singularity are realized by a certain Nakajima quiver variety, namely that of the 5-pointed star-shaped quiver.  I will place this work in the wider context of the search for McKay-type correspondences for finite subgroups of $\mathrm{SL}(n,\mathbb{C})$ on the one hand, and of the construction of finite-dimensional-quotient approximations to meromorphic Hitchin systems and their integrable systems on the other hand.  The Hitchin system perspective draws upon my prior joint works with each of J. Fisher and L. Schaposnik, respectively. Time permitting, I will speculate upon the symplectic duality of Higgs and Coulomb branches in this setting.

Mon, 12 Jun 2023

14:00 - 15:00
Lecture Room 6

Group-invariant tensor train networks for supervised learning

Nick Vannieuwenhoven
Abstract

Invariance under selected transformations has recently proven to be a powerful inductive bias in several machine learning models. One class of such models are tensor train networks. In this talk, we impose invariance relations on tensor train networks. We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations of an arbitrary discrete group. This method can be up to several orders of magnitude faster than previous approaches. The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model. We applied this model to a protein binding classification problem, taking into account problem-specific invariances, and obtained prediction accuracy in line with state-of-the-art invariant deep learning approaches. This is joint work with Brent Sprangers.

Mon, 12 Jun 2023
13:00
L1

Spacetime and Duality symmetries

Peter West
(KCL )
Abstract

We argue that the existence of solitons in theories in which local symmetries are spontaneously broken requires spacetime to be enlarged by additional coordinates that are associated with large local transformations. In the context of gravity theories the usual coordinates of spacetime can be thought of arising in this way. E theory automatically contains such an enlarged spacetime. We propose that spacetime appears in an underlying theory when the local symmetries are spontaneously broken.

Fri, 09 Jun 2023
16:00
L2

North meets South

Dr Thomas Karam (North Wing) and Dr Hamid Rahkooy (South Wing)
Abstract

North Wing talk: Dr Thomas Karam
Title: Ranges control degree ranks of multivariate polynomials on finite prime fields.

Abstract: Let $p$ be a prime. It has been known since work of Green and Tao (2007) that if a polynomial $P:\mathbb{F}_p^n \mapsto \mathbb{F}_p$ with degree $2 \le d \le p-1$ is not approximately equidistributed, then it can be expressed as a function of a bounded number of polynomials each with degree at most $d-1$. Since then, this result has been refined in several directions. We will explain how this kind of statement may be used to deduce an analogue where both the assumption and the conclusion are strengthened: if for some $1 \le t < d$ the image $P(\mathbb{F}_p^n)$ does not contain the image of a non-constant one-variable polynomial with degree at most $t$, then we can obtain a decomposition of $P$ in terms of a bounded number of polynomials each with degree at most $\lfloor d/(t+1) \rfloor$. We will also discuss the case where we replace the image $P(\mathbb{F}_p^n)$ by for instance $P(\{0,1\}^n)$ in the assumption.

 

South Wing talk: Dr Hamid Rahkooy
Title: Toric Varieties in Biochemical Reaction Networks

Abstract: Toric varieties are interesting objects for algebraic geometers as they have many properties. On the other hand, toric varieties appear in many applications. In particular, dynamics of many biochemical reactions lead to toric varieties. In this talk we discuss how to test toricity algorithmically, using computational algebra methods, e.g., Gröbner bases and quantifier elimination. We show experiments on real world models of reaction networks and observe that many biochemical reactions have toric steady states. We discuss complexity bounds and how to improve computations in certain cases.

Fri, 09 Jun 2023

14:00 - 15:00
L3

Recent and past results on stochastically-modelled biochemical reaction networks

Professor Jinsu Kim
(POSTECH Pohang)
Abstract

When a biological system is modelled using a mathematical process, the next step is often to estimate the system parameters. Although computational and statistical techniques have been developed to estimate parameters for complex systems, this can be a difficult task. As a result, researchers have focused on revealing parameter-independent dynamical properties of a system. In this talk, we will discuss the study of qualitative behaviors of stochastic biochemical systems using reaction networks, which are graphical configurations of biochemical systems. The goal of this talk is to (1) introduce the basic modelling aspects of stochastically-modelled reaction networks and (2) discuss important results in this literature, including the random time representation, relationships between stochastic and deterministic models, and derivation of stability via network structures.

Fri, 09 Jun 2023

12:30 - 13:30
C1

The Harish-Chandra local character expansion and canonical dimensions for p-adic reductive groups

Mick Gielen
(University of Oxford)
Abstract

A complex irreducible admissible representation of a reductive p-adic group is typically infinite-dimensional. To quantify the "size" of such representations, we introduce the concept of canonical dimension. To do so we have to discuss the Moy-Prasad filtrations. These are natural filtrations of the parahoric subgroups. Next, we relate the canonical dimension to the Harish-Chandra local character expansion, which expresses the distribution character of an irreducible representation in terms of nilpotent orbital integrals. Using this, we consider the wavefront set of a representation. This is an invariant the naturally arises from the local character expansion. We conclude by explaining why the canonical dimension might be considered a weaker but more computable alternative to the wavefront set.

Fri, 09 Jun 2023

10:00 - 11:00
Online

Extracting vital signs from photoplethysmogram (PPG) signals.

Shashank Chaganty MBBS, MSc(Oxon), MRCS(Ed)
(Vichag)
Further Information

The virtual ward project in the UK aims to revolutionise community-based remote patient monitoring for high-risk patients. Currently, NHS trusts provide patients in the community with smartphones (for communication purposes) and vital signs monitoring equipment (such as BP cuffs and oxygen saturation probes). Apart from the initial capital cost of purchasing the equipment, the trusts incur additional costs for logistics (delivering equipment to and from patients) and sterilisation processes. But what if the smartphone itself could capture vital signs? The algorithm development process would utilise open-source code to extract photoplethysmogram (PPG) waveforms from video pixels captured through the "finger-on-camera" technique. The challenge lies in accurately extracting vital signs information from these PPG waveforms.

 

Thu, 08 Jun 2023
17:00
L4

Pushing Properties for NIP Groups and Fields up the n-dependent hierarchy

Nadja Hempel
(HHU Düsseldorf)
Abstract

(joint with Chernikov) 1-dependent theories, better known as NIP theories, are the first class of the strict hierarchy of n-dependent theories. The random n-hypergraph is the canonical object which is n-dependent but not (n−1)-dependent. We proved the existence of strictly n-dependent groups for all natural numbers n. On the other hand, there are no known examples of strictly n-dependent fields and we conjecture that there aren’t any. 

We were interested which properties of groups and fields for NIP theories remain true in or can be generalized to the n-dependent context. A crucial fact about (type-)definable groups in NIP theories is the absoluteness of their connected components. Our first aim is to give examples of n-dependent groups and discuss a adapted version of absoluteness of the connected component. Secondly, we will review the known properties of NIP fields and see how they can be generalized.

Thu, 08 Jun 2023
16:00
L5

The elliptic Gamma function and Stark units for complex cubic fields

Luis Garcia
(University College London)
Abstract

The elliptic Gamma function — a generalization of the q-Gamma function, which is itself the q-analog of the ordinary Gamma function — is a meromorphic special function in several variables that mathematical physicists have shown to satisfy modular functional equations under SL(3,Z). In this talk I will present evidence (numerical and theoretical) that this function often takes algebraic values that satisfy explicit reciprocity laws and that are related to derivatives of Hecke L-functions at s=0. Thus this function conjecturally allows to extend the theory of complex multiplication to complex cubic fields as envisioned by Hilbert's 12th problem. This is joint work with Nicolas Bergeron and Pierre Charollois.

Thu, 08 Jun 2023
14:00
C4

The ABJM SCFT

Horia Magureanu
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 08 Jun 2023
14:00
L3

Condition numbers of tensor decompositions

Nick Vannieuwenhoven
(KU Leuven)
Abstract

Tensor decomposition express a tensor as a linear combination of elementary tensors. They have applications in chemometrics, computer science, machine learning, psychometrics, and signal processing. Their uniqueness properties render them suitable for data analysis tasks in which the elementary tensors are the quantities of interest. However, in applications, the idealized mathematical model is corrupted by measurement errors. For a robust interpretation of the data, it is therefore imperative to quantify how sensitive these elementary tensors are to perturbations of the whole tensor. I will give an overview of recent results on the condition number of tensor decompositions, established with my collaborators C. Beltran, P. Breiding, and N. Dewaele.

Thu, 08 Jun 2023

12:00 - 13:00
Lecture room 5

Mathematical Modelling of Metal Forming

Ed Brambley
(University of Warwick)
Abstract

Metal forming involves permanently deforming metal into a required shape.  Many forms of metal forming are used in industry: rolling, stamping, pressing, drawing, etc; for example, 99% of steel produced globally is first rolled before any subsequent processing.  Most theoretical studies of metal forming use Finite Elements, which is not fast enough for real-time control of metal forming processes, and gives little extra insight.  As an example of how little is known, it is currently unknown whether a sheet of metal that is squashed between a large and a small roller should curve towards the larger roller, or towards the smaller roller.  In this talk, I will give a brief overview of metal forming, and then some progress my group have been making on some very simplified models of cold sheet rolling in particular.  The mathematics involved will include some modelling and asymptotics, multiple scales, and possibly a matrix Wiener-Hopf problem if time permits.

Thu, 08 Jun 2023

10:00 - 12:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
(Oxford University)
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_1.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Wed, 07 Jun 2023
16:00
L6

TBC

TBC
Wed, 07 Jun 2023

13:00 - 14:00
N3.12

Mathematrix: In Conversation with Philip Maini

Abstract

We will be joined by Philip Maini, Professor of Mathematical Biology and Ethnic Minorities Fellow at St John's College, to discuss his mathematical journey and experiences.

Tue, 06 Jun 2023

17:00 - 18:00
Virtual

The Critical Beta-splitting Random Tree

David Aldous
(U.C. Berkeley and University of Washington)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In the critical beta-splitting model of a random $n$-leaf rooted tree, clades (subtrees) are recursively split into sub-clades, and a clade of $m$ leaves is split into sub-clades containing $i$ and $m-i$ leaves with probabilities $\propto 1/(i(m-i))$. This model turns out to have interesting properties. There is a canonical embedding into a continuous-time model ($\operatorname{CTCS}(n)$). There is an inductive construction of $\operatorname{CTCS}(n)$ as $n$ increases, analogous to the stick-breaking constructions of the uniform random tree and its limit continuum random tree. We study the heights of leaves and the limit fringe distribution relative to a random leaf. In addition to familiar probabilistic methods, there are analytic methods (developed by co-author Boris Pittel), based on explicit recurrences, which often give more precise results. So this model provides an interesting concrete setting in which to compare and contrast these methods. Many open problems remain.
Preprints at https://arxiv.org/abs/2302.05066 and https://arxiv.org/abs/2303.02529

Tue, 06 Jun 2023

15:30 - 16:30
Virtual

The Metropolis Algorithm for the Planted Clique Problem

Elchanan Mossel
(MIT)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

More than 30 year ago Jerrum studied the planted clique problem and proved that under worst-case initialization Metropolis fails to recover planted cliques of size $\ll n^{1/2}$ in the Erdős-Rényi graph $G(n,1/2)$. This result is classically cited in the literature of the problem, as the "first evidence" that finding planted cliques of size much smaller than square root $n$ is "algorithmically hard". Cliques of size $\gg n^{1/2}$ are easy to find using simple algorithms. In a recent work we show that the Metropolis process actually fails to find planted cliques under worst-case initialization for cliques up to size almost linear in $n$. Thus the algorithm fails well beyond the $\sqrt{n}$ "conjectured algorithmic threshold". We also prove that, for a large parameter regime, that the Metropolis process fails also under "natural initialization". Our results resolve some open questions posed by Jerrum in 1992. Based on joint work with Zongchen Chen and Iias Zadik.

Tue, 06 Jun 2023

15:00 - 17:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
(Oxford University)
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_0.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Tue, 06 Jun 2023

15:00 - 16:00
L4

Generating tuples of Fuchsian groups

Richard Weidmann
Abstract

Generating n-tuples of a group G, or in other words epimorphisms Fₙ→G are usually studied up to the natural right action of Aut(Fₙ) on Epi(Fₙ,G); here Fₙ is the free group of n generators. The orbits are then called Nielsen classes. It is a classic result of Nielsen that for any n ≥ k there is exactly one Nielsen class of generating n-tuples of Fₖ. This result was generalized to surface groups by Louder.

In this talk the case of Fuchsian groups is discussed. It turns out that the situation is much more involved and interesting. While uniqueness does not hold in general one can show that each class is represented by some unique geometric object called an "almost orbifold covers". This can be thought of as a classification of Nielsen classes. This is joint work with Ederson Dutra.

Tue, 06 Jun 2023
14:00
C6

Dr. Guillaume St-Onge

Dr. Guillaume St-Onge
(Northeastern University Network Science Institute)
Abstract

TBA