Tue, 02 Nov 2021

12:30 - 13:00
C5

A homogenisation approach to mass transport models for organoid culture

Meredith Ellis
(Mathematical Institute (University of Oxford))
Abstract

Organoids are three–dimensional multicellular tissue constructs. When cultured in vitro, they recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine, demand has increased for low–cost and efficient methods of producing them in a reproducible manner and at scale. We are working in collaboration with the biotechnology company Cellesce, who develop bioprocessing systems for the expansion of organoids at scale. Part of their technology includes a bioreactor, which utilises flow of culture media to enhance nutrient delivery to the organoids and facilitate the removal of waste metabolites. A key priority is ensuring uniformity in organoid size and reproducibility; qualities that depends on the bioreactor design and operating conditions. A complete understanding of the system requires knowledge of the spatial and temporal information regarding flow and the resulting oxygen and metabolite concentrations throughout the bioreactor. However, it is impractical to obtain this data empirically, due to the highly–controlled environment of the bioreactor posing difficulties for online real–time monitoring of the system. Thus, we exploit a mathematical modelling approach, to provide spatial as well as temporal information.

In the bioreactor, organoids are seeded as single cells in a layer of hydrogel. We present a general model for the nutrient and waste metabolite concentrations in the hydrogel and organoid regions of the bioreactor. Resolving for the millions of organoids within the hydrogel is computationally expensive and infeasible. Hence, we take a mathematical homogenisation approach to understand how the behaviour of the organoids on the microscale influences the macroscale behaviour in the hydrogel layer. We consider the case of growing organoids, with a temporally and spatially dependent radii, and exploit the separation of scales to systematically derive an effective macroscale model for metabolite transport. We explore some canonical problems to understand our homogenised system.

Tue, 02 Nov 2021
12:00
L5

Worldsheet description of Kerr interactions

Alex Ochirov
(Oxford)
Abstract

The recent progress of applying QFT methods to classical GR has provided a new perspective on the Kerr black hole solution. Its leading gravitational interactions are known to involve an infinite tower of spin-induced multipoles with unit coupling constants. In this talk, I will present a novel form of the classical worldline action that implements these multipole interactions within a single worldsheet integral, which is inspired by the Newman-Janis shift relationship of the Kerr and Schwarzschild solutions. I will also discuss connections to our recently discovered ability to model such interactions using a certain family of scattering amplitudes, as well as a simple double-copy property hidden within. 

This will be an in-person seminar run in hybrid mode.

Mon, 01 Nov 2021

16:00 - 17:00
C1

Convexity and squares in additive combinatorics

Akshat Mudgal
Abstract

A nice collection of problems in additive combinatorics focus on analysing solutions to additive equations over sequences that exhibit some flavour of convexity. This, for instance, includes genuine convex sequences as well as images of arbitrary sets under convex functions. In this talk, I will survey some of the literature surrounding these type of questions, along with some motivation from analytic number theory as well as the current best known results towards these problems.

Mon, 01 Nov 2021

16:00 - 17:00
L4

On diffusion equations driven by nonlinear and nonlocal operators

Juan Luis Vazquez
(Universidad Autonoma de Madrid)
Abstract

We  report  on the theory of evolution equations that combine a strongly nonlinear parabolic character with the presence of fractional operators representing long-range interaction effects, mainly of fractional Laplacian type. Examples include nonlocal porous media equations and fractional p-Laplacian operators appearing in a number of variants. 

Recent work concerns the time-dependent fractional p-Laplacian equation with parameter p>1 and fractional exponent 0<s<1. It is the gradient flow corresponding to the Gagliardo–Slobodeckii fractional energy. Our main interest is the asymptotic behavior of solutions posed in the whole Euclidean space, which is given by a kind of Barenblatt solution whose existence relies on a delicate analysis. The superlinear and sublinear ranges involve different analysis and results. 
 

Mon, 01 Nov 2021

16:00 - 17:00
L3

: Locality for singular stochastic PDEs

YVAIN BRUNED
(Edinburgh University)
Abstract

 In this talk, we will present the tools of regularity structures to deal with singular stochastic PDEs that involve non-translation invariant differential operators. We describe in particular the renormalized equation for a very large class of spacetime dependent renormalization schemes. Our approach bypasses the previous approaches in the translation-invariant setting. This is joint work with Ismael Bailleul.

 

Mon, 01 Nov 2021
15:45
Virtual

Peg problems

Joshua Greene
(Boston College)
Abstract

I will talk about joint work with Andrew Lobb related to Toeplitz's square peg problem, which asks whether every (continuous) Jordan curve in the Euclidean plane contains the vertices of a square. Specifically, we show that every smooth Jordan curve contains the vertices of a cyclic quadrilateral of any similarity class. I will describe the context for the result and its proof, which involves symplectic geometry in a surprising way.

Mon, 01 Nov 2021
14:15
L4

Stability conditions for polarised varieties

Ruadhaí Dervan
(Cambridge)
Abstract

A central theme of complex geometry is the relationship between differential-geometric PDEs and algebro-geometric notions of stability. Examples include Hermitian Yang-Mills connections and Kähler-Einstein metrics on the PDE side, and slope stability and K-stability on the algebro-geometric side. I will describe a general framework associating geometric PDEs on complex manifolds to notions of stability, and will sketch a proof showing that existence of solutions is equivalent to stability in a model case. The framework can be seen as an analogue in the setting of varieties of Bridgeland's stability conditions on triangulated categories.

Mon, 01 Nov 2021
12:45
Virtual

Relations between 6d and 4d SCFTs -- VIRTUAL!

Evyatar Sabag
(Oxford University)
Abstract

We will review how one can find families of 4d N=1 SCFTs starting from known 6d (1,0) SCFTs. 

Then we will discuss a relation between 6d RG-flows and 4d RG-flows, where the 4d RG-flow relates 4d N=1 models constructed from compactification of 6d (1,0) SCFTs related by the 6d RG-flow. We will show how we can utilize such a relation to find many "Lagrangians" for strongly coupled 4d models. Relating 6d SCFTs to 4d models as mentioned above will result in geometric reasoning behind some 4d phenomena such as dualities and symmetry enhancement.

Such a program generates a large database of known 4d N=1 SCFTs with many interrelations one can use in future efforts to construct 4d N=1 SCFTs from string theory directly.

Fri, 29 Oct 2021
16:00
N4.01

A microscopic expansion for superconformal indices

Ji Hoon Lee
(Perimeter Institute)
Further Information

It is also possible to join online via Zoom.

Abstract

I discuss a novel expansion of superconformal indices of U(N) gauge theories at finite N. When a holographic description is available, the formula expresses the index as a sum over stacks of "giant graviton" branes in the dual string theory. Surprisingly, the expansion turns out to be exact: the sum over strings and branes seems to capture the degeneracy of states expected from saddle geometries such as BPS black holes, while also reproducing the correct degeneracies at lower orders of charges. Based on 2109.02545 with D. Gaiotto.

Fri, 29 Oct 2021

16:00 - 17:00
L1

Applying for academic jobs

Edwina Yeo and Jay Swar
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 29 Oct 2021

15:00 - 16:00
Virtual

Modeling shapes and fields: a sheaf theoretic perspective

Sayan Mukherjee
(Duke University)
Abstract

We will consider modeling shapes and fields via topological and lifted-topological transforms. 

Specifically, we show how the Euler Characteristic Transform and the Lifted Euler Characteristic Transform can be used in practice for statistical analysis of shape and field data. The Lifted Euler Characteristic is an alternative to the. Euler calculus developed by Ghrist and Baryshnikov for real valued functions. We also state a moduli space of shapes for which we can provide a complexity metric for the shapes. We also provide a sheaf theoretic construction of shape space that does not require diffeomorphisms or correspondence. A direct result of this sheaf theoretic construction is that in three dimensions for meshes, 0-dimensional homology is enough to characterize the shape.

Fri, 29 Oct 2021

14:00 - 15:00
South Mezz Circulation
Fri, 29 Oct 2021

14:00 - 15:00
L3

Design and control of biochemical reaction networks

Dr Tomislav Plesa
(University of Cambridge)
Abstract

Many scientific questions in biology can be formulated as a direct problem:

given a biochemical system, can one deduce some of its properties? 

For example, one might be interested in deducing equilibria of a given intracellular network.  On the other hand, one might instead be interested in designing an intracellular network with specified equilibria. Such scientific tasks take the form of inverse problems:
given a property, can one design a biochemical system that displays this property? 

Given a biochemical system, can one embed additional molecular species and reactions into the original system to control some of its properties?
These questions are at the heart of the emerging field of synthetic biology, where it has recently become possible to systematically realize dynamical systems using molecules.  Furthermore, addressing these questions for man-made synthetic systems may also shed light on how evolution has overcome similar challenges for natural systems.  In this talk, I will focus on the inverse problems, and outline some of the results and challenges which are important when biochemical systems are designed and controlled.

Thu, 28 Oct 2021

16:00 - 17:00
L3

Optimal bailout strategies and the drift controlled supercooled Stefan problem

CHRISTOPH REISINGER
(University of Oxford)
Abstract

We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash to a subset of the entities in order to limit defaults to a given proportion of entities. We prove that the value of the agent's control problem converges as the number of defaultable agents goes to infinity, and it satisfies  a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a forward-backward coupled system of PDEs. Our simulations show that the agent's optimal strategy is to subsidise banks whose asset values lie in a non-trivial time-dependent region. Finally, we study a linear-quadratic version of the model where instead of the losses, the agent optimises a terminal loss function of the asset values. In this case, we are able to give semi-analytic strategies, which we again illustrate numerically. Joint work with Christa Cuchiero and Stefan Rigger.

Thu, 28 Oct 2021
14:00
Virtual

Randomized FEAST Algorithm for Generalized Hermitian Eigenvalue Problems with Probabilistic Error Analysis

Agnieszka Międlar
(University of Kansas)
Further Information

This talk is hosted by the Computational Mathematics Group of the Rutherford Appleton Laboratory.

Abstract

Randomized NLA methods have recently gained popularity because of their easy implementation, computational efficiency, and numerical robustness. We propose a randomized version of a well-established FEAST eigenvalue algorithm that enables computing the eigenvalues of the Hermitian matrix pencil $(\textbf{A},\textbf{B})$ located in the given real interval $\mathcal{I} \subset [\lambda_{min}, \lambda_{max}]$. In this talk, we will present deterministic as well as probabilistic error analysis of the accuracy of approximate eigenpair and subspaces obtained using the randomized FEAST algorithm. First, we derive bounds for the canonical angles between the exact and the approximate eigenspaces corresponding to the eigenvalues contained in the interval $\mathcal{I}$. Then, we present bounds for the accuracy of the eigenvalues and the corresponding eigenvectors. This part of the analysis is independent of the particular distribution of an initial subspace, therefore we denote it as deterministic. In the case of the starting guess being a Gaussian random matrix, we provide more informative, probabilistic error bounds. Finally, we will illustrate numerically the effectiveness of all the proposed error bounds.

 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 28 Oct 2021

12:00 - 13:00
C1

Symmetry breaking and pattern formation for local/nonlocal interaction functionals

Sara Daneri
(Gran Sasso Science Institute GSSI)
Abstract

In this talk I will review some recent results obtained in collaboration with E. Runa and A. Kerschbaum on the one-dimensionality of the minimizers
of a family of continuous local/nonlocal interaction functionals in general dimension. Such functionals have a local term, typically the perimeter or its Modica-Mortola approximation, which penalizes interfaces, and a nonlocal term favouring oscillations which are high in frequency and in amplitude. The competition between the two terms is expected by experiments and simulations to give rise to periodic patterns at equilibrium. Functionals of this type are used  to model pattern formation, either in material science or in biology. The difficulty in proving the emergence of such structures is due to the fact that the functionals are symmetric with respect to permutation of coordinates, while in more than one space dimensions minimizers are one-dimesnional, thus losing the symmetry property of the functionals. We will present new techniques and results showing that for two classes of functionals (used to model generalized anti-ferromagnetic systems, respectively  colloidal suspensions), both in sharp interface and in diffuse interface models, minimizers are one-dimensional and periodic, in general dimension and also while imposing a nontrivial volume constraint.

Thu, 28 Oct 2021

12:00 - 13:00
L3

Active Matter and Transport in Living Cells

Camille Duprat
(LadHyX Ecole Polytechnique)
Further Information

Camille is mostly interested in problems involving the coupling of capillary-driven and low Reynolds number flows and elastic structures, especially from an experimental point of view.

Publications can be found here

Abstract

The organized movement of intracellular material is part of the functioning of cells and the development of organisms. These flows can arise from the action of molecular machines on the flexible, and often transitory, scaffoldings of the cell. Understanding phenomena in this realm has necessitated the development of new simulation tools, and of new coarse-grained mathematical models to analyze and simulate. In that context, I'll discuss how a symmetry-breaking "swirling" instability of a motor-laden cytoskeleton may be an important part of the development of an oocyte, modeling active material in the spindle, and what models of active, immersed polymers tell us about chromatin dynamics in the nucleus.

Thu, 28 Oct 2021
11:30
Virtual

Martin's Maximum^++ implies the P_max axiom (*) -- Part I

Ralf Schindler
(University of Münster)
Abstract

Forcing axioms spell out the dictum that if a statement can be forced, then it is already true. The P_max axiom (*) goes beyond that by claiming that if a statement is consistent, then it is already true. Here, the statement in question needs to come from a resticted class of statements, and "consistent" needs to mean "consistent in a strong sense". It turns out that (*) is actually equivalent to a forcing axiom, and the proof is by showing that the (strong) consistency of certain theories gives rise to a corresponding notion of forcing producing a model of that theory. Our result builds upon earlier work of R. Jensen and (ultimately) Keisler's "consistency properties".

(This is Part I of a two-part talk.)

Wed, 27 Oct 2021

16:00 - 17:00
C5

Finiteness properties of groups

Sam Fisher
(University of Oxford)
Abstract

Finiteness properties of groups provide various generalisations of the properties "finitely generated" and "finitely presented." We will define different types of finiteness properties and discuss Bestvina-Brady groups as they provide examples of groups with interesting combinations of finiteness properties.

Wed, 27 Oct 2021

14:00 - 15:00
L5

Calabi-Yau Modularity and Black Holes

Pyry Kuusela
Abstract

One of the consequences of Wiles' proof of Fermat's Last Theorem is that elliptic curves over rational numbers can be associated with modular forms, whose Fourier coefficients essentially count points on the curve. Generalisation of this modularity to higher dimensional varieties is a very interesting open question. In this talk I will give a physicist's view of Calabi-Yau modularity. Starting with a very simplified overview of some number theoretic background related to the Langlands program, I relate some of this theory to black holes in IIB/A string theories compactified on Calabi-Yau threefolds. It is possible to associate modular forms to certain such black holes. We can then ask whether these modular forms have a physical interpretation as, for example, counting black hole microstates. In an attempt to answer this question, we derive a formula for fully instanton-corrected black hole entropy, which gives an interesting hint of this counting. The talk is partially based on recent work arXiv:2104.02718 with P. Candelas and J. McGovern.

Wed, 27 Oct 2021

10:00 - 12:00
L3

Finite Element Exterior Calculus - Part 1

Kaibu Hu
(Oxford University)
Further Information

Structure: 4 x 2 hr Lectures

Part 1 - 27th October

Part 2 - 3rd November

Part 3 - 10th November

Part 4 - 17th November

Abstract

Many PDE models encode fundamental physical, geometric and topological structures. These structures may be lost in discretisations, and preserving them on the discrete level is crucial for the stability and efficiency of numerical methods. The finite element exterior calculus (FEEC) is a framework for constructing and analysing structure-preserving numerical methods for PDEs with ideas from topology, homological algebra and the Hodge theory. 

 

In this seminar, we present the theory and applications of FEEC. This includes analytic results (Hodge decomposition, regular potentials, compactness etc.), Hodge-Laplacian problems and their structure-preserving finite element discretisation, and applications in electromagnetism, fluid and solid mechanics. Knowledge on geometry and topology is not required as prerequisites.

 

References:

 

1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018) 

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006) 

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010) 

4. Arnold, D.N., Hu, K.: Complexes from complexes. Foundations of Computational Mathematics (2021)

Tue, 26 Oct 2021
16:30
L5

String-like amplitudes for surfaces beyond the disk

Hugh Thomas
(UQÀM)
Abstract
In 1969, Koba and Nielsen found some equations (now known as u-equations or non-crossing equations) whose solutions can be described as cross-ratios of n points on a line. The tree string amplitude, or generalized Veneziano amplitude,  can be defined as an integral over the non-negative solutions to the u-equations. This is a function of the Mandelstam variables and has interesting properties: it does not diverge as the Mandelstam variables get large, and it exhibits factorization when one of the variables approaches zero. One should think of these functions as being associated to the disk with marked points on the boundary. I will report on ongoing work with Nima Arkani-Hamed, Hadleigh Frost, Pierre-Guy Plamondon, and Giulio Salvatori, in which we replace the disk by other oriented surfaces. I will emphasize the part of our approach which is based on representations of gentle algebras, which arise from a triangulation of the surface.

 

Tue, 26 Oct 2021

14:30 - 15:00
L3

Fast & Accurate Randomized Algorithms for Linear Systems and Eigenvalue Problems

Yuji Nakatsukasa
(University of Oxford)
Abstract

We develop a new class of algorithms for general linear systems and a wide range of eigenvalue problems. These algorithms apply fast randomized sketching to accelerate subspace projection methods.  This approach offers great flexibility in designing the basis for the approximation subspace, which can improve scalability in many computational environments. The resulting algorithms outperform the classic methods with minimal loss of accuracy. For model problems, numerical experiments show large advantages over MATLAB’s optimized routines, including a 100x speedup. 

Joint work with Joel Tropp (Caltech). 

Tue, 26 Oct 2021

14:00 - 15:00
Virtual

FFTA: Local2Global: Scaling global representation learning on graphs via local training

Lucas Jeub
(Institute for Scientific Interchange)
Abstract

We propose a decentralised “local2global" approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “patches") and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization.  A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronisation during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner.

arXiv link: https://arxiv.org/abs/2107.12224v1

Tue, 26 Oct 2021
14:00
Virtual

Friendly bisections of random graphs

Ashwin Sah
(MIT)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details. Joint with the Random Matrix Theory Seminar.

Abstract

We introduce a new method for studying stochastic processes in random graphs controlled by degree information, involving combining enumeration techniques with an abstract second moment argument. We use it to constructively resolve a conjecture of Füredi from 1988: with high probability, the random graph G(n,1/2) admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which n-o(n) vertices have at least as many neighbours in their own part as across. This work is joint with Asaf Ferber, Matthew Kwan, Bhargav Narayanan, and Mehtaab Sawhney.

Tue, 26 Oct 2021

14:00 - 14:30
L3

Randomized algorithms for trace estimation

Alice Cortinovis
(EPFL)
Abstract

The Hutchinson’s trace estimator approximates the trace of a large-scale matrix A by computing the average of some quadratic forms involving A and some random vectors. Hutch++ is a more efficient trace estimation algorithm that combines this with the randomized singular value decomposition, which obtains a low-rank approximation of A by multiplying the matrix with some random vectors. In this talk, we present an improved version of Hutch++ which aims at minimizing the computational cost - that is, the number of matrix-vector multiplications with A - needed to achieve a trace estimate with a target accuracy. This is joint work with David Persson and Daniel Kressner.

Tue, 26 Oct 2021
12:00
Virtual

Asymptotic safety - a symmetry principle for quantum gravity and matter

Astrid Eichhorn
(University of Southern Denmark)
Abstract

I will introduce asymptotic safety, which is a quantum field theoretic
paradigm providing a predictive ultraviolet completion for quantum field
theories. I will show examples of asymptotically safe theories and then
discuss the search for asymptotically safe models that include quantum
gravity.
In particular, I will explain how asymptotic safety corresponds to a new
symmetry principle - quantum scale symmetry - that has a high predictive
power. In the examples I will discuss, asymptotic safety with gravity could
enable a first-principles calculation of Yukawa couplings, e.g., in the
quark sector of the Standard Model, as well as in dark matter models.

Mon, 25 Oct 2021

16:00 - 17:00
C2

Hyperelliptic continued fractions

Francesco Ballini
(Oxford)
Abstract

We can define a continued fraction for formal series $f(t)=\sum_{i=-\infty}^d c_it^i$ by repeatedly removing the polynomial part, $\sum_{i=0}^d c_it^i$, (the equivalent of the integer part) and inverting the remaining part, as in the real case. This way, the partial quotients are polynomials. Both the usual continued fractions and the polynomial continued fractions carry properties of best approximation. However, while for square roots of rationals the real continued fraction is eventually periodic, such periodicity does not always occur for $\sqrt{D(t)}$. The correct analogy was found by Abel in 1826: the continued fraction of $\sqrt{D(t)}$ is eventually periodic if and only if there exist nontrivial polynomials $x(t)$, $y(t)$ such that $x(t)^2-D(t)y(t)^2=1$ (the polynomial Pell equation). Notice that the same holds also for square root of integers in the real case. In 2014 Zannier found that some periodicity survives for all the $\sqrt{D(t)}$: the degrees of their partial quotients are eventually periodic. His proof is strongly geometric and it is based on the study of the Jacobian of the curve $u^2=D(t)$. We give a brief survey of the theory of polynomial continued fractions, Jacobians and an account of the proof of the result of Zannier.

Mon, 25 Oct 2021

16:00 - 17:00
L3

Brownian Windings

ISAO SAUZEDDE
(University of Oxford)
Abstract

Given a point and a loop in the plane, one can define a relative integer which counts how many times the curve winds around the point. We will discuss how this winding function, defined for almost every points in the plane, allows to define some integrals along the loop. Then, we will investigate some properties of it when the loop is Brownian.
In particular, we will explain how to recover data such as the Lévy area of the curve and its occupation measure, based on the values of the winding of uniformly distributed points on the plane.

 

Mon, 25 Oct 2021
15:45
Virtual

How do field theories detect the torsion in topological modular forms

Daniel Berwick Evans
(University of Illinois at Urbana-Champaign)
Abstract

Since the mid 1980s, there have been hints of a connection between 2-dimensional field theories and elliptic cohomology. This lead to Stolz and Teichner's conjectured geometric model for the universal elliptic cohomology theory of topological modular forms (TMF) for which cocycles are 2-dimensional (supersymmetric) field theories. Properties of these field theories lead to the expected integrality and modularity properties of classes in TMF. However, the abundant torsion in TMF has always been mysterious from the field theory point of view. In this talk, we will describe a map from 2-dimensional field theories to a cohomology theory that approximates TMF. This map affords a cocycle description of certain torsion classes. In particular, we will explain how a choice of anomaly cancelation for the supersymmetric sigma model with target $S^3$ determines a cocycle representative of the generator of $\pi_3(TMF)=\mathbb{Z}/24$.

Mon, 25 Oct 2021
14:15
L4

The structure of mean curvature flow translators with finite total curvature

Ilyas Khan
(Oxford University)
Abstract

In the mean curvature flow, translating solutions are an important model for singularity formation. In this talk, I will describe the asymptotic structure of 2D mean curvature flow translators embedded in R^3 which have finite total curvature, which turns out to be highly rigid. I will outline the proof of this asymptotic description, in particular focusing on some novel and unexpected features of this proof.

Mon, 25 Oct 2021

12:45 - 13:45
Virtual

Random Matrix Theory for the Black Hole Interior

Mark Mezei
(Simons Center for Geometry and Physics)
Further Information

NOTE UNUSUAL DAY AND TIME: Monday/12:45pm

Abstract

In recent years a fruitful interplay has been unfolding between quantum chaos and black holes. In the first part of the talk, I provide a sampler of these developments. Next, we study the fate of the black hole interior at late times in simple models of quantum gravity that have dual descriptions in terms of Random Matrix Theory. We find that the volume of the interior grows linearly at early times and then, due to non-perturbative effects, saturates at a time and towards a value that are exponentially large in the entropy of the black hole. This provides a confirmation of the complexity equals volume proposal of Susskind, since in chaotic systems complexity is also expected to exhibit the same behavior.

Fri, 22 Oct 2021

16:00 - 17:00
L1

What does a DPhil in Oxford look like?

Brian Tyrrell, Naya Yerolemou and Alice Kerr
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 22 Oct 2021

15:00 - 16:00
Virtual

Combinatorial Laplacians in data analysis: applications in genomics

Pablo Camara
(University of Pennsylvania)
Further Information

Pablo G. Cámara is an Assistant Professor of Genetics at the University of Pennsylvania and a faculty member of the Penn Institute for Biomedical Informatics. He received a Ph.D. in Theoretical Physics in 2006 from Universidad Autónoma de Madrid. He performed research in string theory for several years, with postdoctoral appointments at Ecole Polytechnique, the European Organization for Nuclear Research (CERN), and University of Barcelona. Fascinated by the extremely interesting and fundamental open questions in biology, in 2014 he shifted his research focus into problems in quantitative biology, and joined the groups of Dr. Rabadan, at Columbia University, and Dr. Levine, at the Institute for Advanced Study (Princeton). Building upon techniques from applied topology and statistics, he has devised novel approaches to the inference of ancestral recombination, human recombination mapping, the study of cancer heterogeneity, and the analysis of single-cell RNA-sequencing data from dynamic and heterogeneous cellular populations.

Abstract

One of the prevailing paradigms in data analysis involves comparing groups of samples to statistically infer features that discriminate them. However, many modern applications do not fit well into this paradigm because samples cannot be naturally arranged into discrete groups. In such instances, graph techniques can be used to rank features according to their degree of consistency with an underlying metric structure without the need to cluster the samples. Here, we extend graph methods for feature selection to abstract simplicial complexes and present a general framework for clustering-independent analysis. Combinatorial Laplacian scores take into account the topology spanned by the data and reduce to the ordinary Laplacian score when restricted to graphs. We show the utility of this framework with several applications to the analysis of gene expression and multi-modal cancer data. Our results provide a unifying perspective on topological data analysis and manifold learning approaches to the analysis of point clouds.

Fri, 22 Oct 2021

14:00 - 15:00
L1

Making the most of intercollegiate classes

Dr Richard Earl, Dr Neil Laws, and Dr Vicky Neale
Abstract

What should you expect in intercollegiate classes?  What can you do to get the most out of them?  In this session, experienced class tutors will share their thoughts, including advice about online classes. 

All undergraduate and masters students welcome, especially Part B and MSc students attending intercollegiate classes. 

Fri, 22 Oct 2021

14:00 - 15:00
N3.12

Non-commutative Krull dimension and Iwasawa algebras

James Timmins
(University of Oxford)
Abstract

The Krull dimension is an ideal-theoretic invariant of an algebra. It has an important meaning in algebraic geometry: the Krull dimension of a commutative algebra is equal to the dimension of the corresponding affine variety/scheme. In my talk I'll explain how this idea can be transformed into a tool for measuring non-commutative rings. I'll illustrate this with important examples and techniques, and describe what is known for Iwasawa algebras of compact $p$-adic Lie groups.

Fri, 22 Oct 2021

14:00 - 15:00
L3

Programmable genome regulation for studying quantitative genomics and developing high-precision therapy

Prof Stanley Qi
(Departments of Bioengineering and Chemical and Systems Biology Stanford University)
Abstract

Manipulation of the genome function is important for understanding the underlying genetics for sophisticated phenotypes and developing gene therapy. Beyond gene editing, there is a major need for high-precision and quantitative technologies that allow controlling and studying gene expression and epigenetics in the genome. Towards this goal, we develop the concept and technologies for the use of the nuclease-deactivated CRISPR-Cas (dCas) system, repurposed from the Cas nuclease, for programmable transcription regulation, epigenetic modifications, and the 3D genome organization. We combine genome engineering and mathematical modeling to understand the noncoding DNA function including ultralong-distance enhancers and repetitive elements. We actively explore new tools that allow precise manipulation of the large-scale chromatin as a novel gene therapy. In this talk, I will highlight our works at the interface between genome engineering and chromatin biology for studying the noncoding genome and related applications.

Fri, 22 Oct 2021

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Joel Dyer, Deqing Jiang
(Mathematical Institute (University of Oxford))
Thu, 21 Oct 2021

16:00 - 17:00
L3

Is volatility rough?

PURBA DAS
(University of Oxford)
Abstract

We introduce a method for estimating the roughness of a function based on a discrete sample, using the concept of normalized p-th variation along a sequence of partitions. We discuss the consistency of this estimator in a pathwise setting under high-frequency asymptotics. We investigate its finite sample performance for measuring the roughness of sample paths of stochastic processes using detailed numerical experiments based on sample paths of Fractional Brownian motion and other fractional processes.
We then apply this method to estimate the roughness of realized volatility signals based on high-frequency observations.
Through a detailed numerical experiment based on a stochastic volatility model, we show that even when instantaneous volatility has diffusive dynamics with the same roughness as Brownian motion, the realized volatility exhibits rougher behaviour corresponding to a Hurst exponent significantly smaller than 0.5. Similar behaviour is observed in financial data, which suggests that the origin of the roughness observed in realized volatility time-series lies in the `microstructure noise' rather than the volatility process itself.

 

 

 

Thu, 21 Oct 2021
15:00
Virtual

The stable boundary

Maryanthe Malliaris
(University of Chicago)
Abstract

This talk will be about the stable boundary seen from different recent points of view.

Thu, 21 Oct 2021
14:00
Virtual

Randomized Methods for Sublinear Time Low-Rank Matrix Approximation

Cameron Musco
(University of Massachusetts)
Abstract

I will discuss recent advances in sampling methods for positive semidefinite (PSD) matrix approximation. In particular, I will show how new techniques based on recursive leverage score sampling yield a surprising algorithmic result: we give a method for computing a near optimal k-rank approximation to any n x n PSD matrix in O(n * k^2) time. When k is not too large, our algorithm runs in sublinear time -- i.e. it does not need to read all entries of the matrix. This result illustrates the ability of randomized methods to exploit the structure of PSD matrices and go well beyond what is possible with traditional algorithmic techniques. I will discuss a number of current research directions and open questions, focused on applications of randomized methods to sublinear time algorithms for structured matrix problems.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 21 Oct 2021

12:00 - 13:00
L3

Knotting in proteins and other open curves

Eric Rawdon
(University of St. Thomas)
Further Information

Eric Rawdon is a Professor in Mathematics & Data Analytics at the University of St. Thomas, Minnesota.

Research interests

Physical knot theory

Publications

Please see google scholar

Abstract

Some proteins (in their folded form) are classified as being knotted.

The function of the knotting is mysterious since knotting seemingly

would make the folding process unnecessarily complicated.  To

function, proteins need to fold quickly and reproducibly, and

misfolding can have catastrophic results.  For example, Mad Cow

disease and the human analog, Creutzfeldt-Jakob disease, come from

misfolded proteins.

 

Traditionally, knotting is only defined for closed curves, where the

topology is trapped in the loop.  However, proteins have free ends, as

well as most of the objects that humans consider as being knotted

(like shoelaces and strings of lights).  Defining knotting in open

curves is tricky and ambiguous.  We consider some definitions of

knotting in open curves and see how one of these definitions is used

to characterize the knotting in proteins.

Wed, 20 Oct 2021

16:00 - 17:00

Proper CAT(0) actions of unipotent-free linear groups

Sami Douba
(McGill University)
Abstract

Button observed that finitely generated linear groups containing no nontrivial unipotent matrices behave much like groups admitting proper actions by semisimple isometries on complete CAT(0) spaces. It turns out that any finitely generated linear group possesses an action on such a space whose restrictions to unipotent-free subgroups are in some sense tame. We discuss this phenomenon and some of its implications for the representation theory of certain 3-manifold groups.

Tue, 19 Oct 2021

15:30 - 16:30
L6

TBA

Philip Cohen
(University of Oxford)
Further Information

POSTPONED TO A LATER DATE

Abstract

TBA

Tue, 19 Oct 2021
14:00
L5

Sharp stability of the Brunn-Minkowski inequality

Peter Van Hintum
(Oxford)
Abstract

I'll consider recent results concerning the stability of the classic Brunn-Minkowski inequality. In particular, I will focus on the linear stability for homothetic sets. Resolving a conjecture of Figalli and Jerison, we showed there are constants $C,d>0$ depending only on $n$ such that for every subset $A$ of $\mathbb{R}^n$ of positive measure, if $|(A+A)/2 - A| \leq d |A|$, then $|co(A) - A| \leq C |(A+A)/2 - A|$ where $co(A)$ is the convex hull of $A$. The talk is based on joint work with Hunter Spink and Marius Tiba.

Tue, 19 Oct 2021

14:00 - 15:00
Virtual

FFTA: State aggregation for dynamical systems: An information-theoretic approach

Mauro Faccin
(Université de Paris)
Abstract

Model reduction is one of the most used tools to characterize real-world complex systems. A large realistic model is approximated by a simpler model on a smaller state space, capturing what is considered by the user as the most important features of the larger model. In this talk we will introduce a new information-theoretic criterion, called "autoinformation", that aggregates states of a Markov chain and provide a reduced model as Markovian (small memory of the past) and as predictable (small level of noise) as possible. We will discuss the connection of autoinformation to widely accepted model reduction techniques in network science such as modularity or degree-corrected stochastic block model inference. In addition to our theoretical results, we will validate such technique with didactic and real-life examples. When applied to the ocean surface currents, our technique, which is entirely data-driven, is able to identify the main global structures of the oceanic system when focusing on the appropriate time-scale of around 6 months.
arXiv link: https://arxiv.org/abs/2005.00337

Tue, 19 Oct 2021

12:30 - 13:00
C5

Control of bifurcation structures using shape optimization

Nicolas Boulle
(Mathematical Institute (University of Oxford))
Abstract

Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. In this talk, we will describe a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain. Our aim is to delay or advance a given branch point to a target parameter value. The algorithm consists of solving a shape optimization problem constrained by an augmented system of equations, called the Moore–Spence system, that characterize the location of the branch points. We will demonstrate the effectiveness of this technique on several numerical experiments on the Allen–Cahn, Navier–Stokes, and hyperelasticity equations.

Tue, 19 Oct 2021
12:00
L5

Why Null Infinity Is Not Smooth, and How to Measure Its Non-smoothness

Leonhard Kehrberger
(Cambridge)
Abstract

Penrose's proposal of smooth conformal compactification is not only of geometric elegance, it also makes concrete predictions on physically measurable objects such as the "late-time tails" of gravitational waves.  At the same time, the physical motivation for a smooth null infinity remains itself unclear. In this talk, building on arguments due to Christodoulou, Damour and others, I will show that, in generic gravitational collapse, the "peeling property" of gravitational radiation is violated (so one cannot attach a smooth null infinity). Moreover, I will explain how this violation of peeling is in principle measurable in the form of leading-order deviations from the usual late-time tails of gravitational radiation.

This talk is based on https://arxiv.org/abs/2105.08079, https://arxiv.org/abs/2105.08084 and … .

It will be a hybrid seminar on both zoom and in-person in L5.