Tue, 04 May 2021
14:00
Virtual

Fast randomized linear solver

Yuji Nakatsukasa
(Mathematical Institute (University of Oxford))
Abstract

We propose a randomized algorithm for solving a linear system $Ax = b$ with a highly numerically rank-deficient coefficient matrix $A$ with nearly consistent right-hand side possessing a small-norm solution. Our algorithm finds a small-norm solution with small residual in $O(N_r + nrlogn + r^3 )$ operations, where $r$ is the numerical rank of $A$ and $N_r$ is the cost of multiplying an $n\times r$ matrix to $A$. 

Joint work with Marcus Webb (Manchester). 

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 04 May 2021

12:45 - 13:30

Computing the Index of Saddle Points without Second Derivatives

Ambrose Yim
(Mathematical Institute (University of Oxford))
Abstract

The index of a saddle point of a smooth function is the number of descending directions of the saddle. While the index can usually be retrieved by counting the number of negative eigenvalues of the Hessian at the critical point, we may not have the luxury of having second derivatives in data deriving from practical applications. To address this problem, we develop a computational pipeline for estimating the index of a non-degenerate saddle point without explicitly computing the Hessian. In our framework, we only require a sufficiently dense sample of level sets of the function near the saddle point. Using techniques in Morse theory and Topological Data Analysis, we show how the shape of saddle points can help us infer the index of the saddle. Furthermore, we derive an explicit upper bound on the density of point samples necessary for inferring the index depending on the curvature of level sets. 

Tue, 04 May 2021
12:00

Non-singular extension of the Kerr-NUT- (anti) de Sitter spacetimes

Dr Jerzy Lewandowski
(University of Warsaw)
Abstract

The outstanding issue of a non-singular extension of the Kerr-NUT- (anti) de Sitter solutions to Einstein’s equations is solved completely. The Misner’s method of obtaining the extension for Taub-NUT spacetime is generalized in a non-singular manner. The Killing vectors that define non-singular spaces of non-null orbits are derived and applied. The global structure of spacetime is discussed. The non-singular conformal geometry of theinfinities is derived. The Killing horizons are present.

Mon, 03 May 2021

16:00 - 17:00

On maximal product sets of random sets

Daniele Mastrostefano
Abstract

For every positive integer N and every α ∈ [0,1), let B(N, α) denote the probabilistic model in which a random set A of (1,...,N) is constructed by choosing independently every element of (1,...,N) with probability α. We prove that, as N → +∞, for every A in B(N, α) we have |AA| ~ |A|^2/2 with probability 1-o(1), if and only if (log(α^2(log N)^{log 4-1}))(√loglog N) → ∞. This improves on a theorem of Cilleruelo, Ramana and Ramar\'e, who proved the above asymptotic between |AA| and |A|^2/2 when α =o(1/√log N), and supplies a complete characterization of maximal product sets of random sets.

Mon, 03 May 2021

16:00 - 17:00
Virtual

Simultaneous development of shocks and cusps for 2D compressible Euler from smooth initial data

Steve Shkoller
(UC Davis)
Abstract

A fundamental question in fluid dynamics concerns the formation of discontinuous shock waves from smooth initial data. In previous works, we have established stable generic shock formation for the compressible Euler system, showing that at the first singularity the solution has precisely C^{1/3} Holder regularity, a so-called preshock. The focus of this talk is a complete space-time description of the solution after this initial singularity. We show that three surfaces of discontinuity emerge simultaneously and instantaneously from the preshock: the classical shock discontinuity that propagates by the Rankine–Hugoniot conditions, together with two distinct surfaces in space-time, along which C^{3/2} cusp singularities form.

Mon, 03 May 2021

15:45 - 16:45
Virtual

Unknotting number and satellites

Jennifer Hom
(Georgia Tech)
Abstract

The unknotting number of a knot is the minimum number of crossing changes needed to untie the knot. It is one of the simplest knot invariants to define, yet remains notoriously difficult to compute. We will survey some basic knot theory invariants and constructions, including the satellite knot construction, a straightforward way to build new families of knots. We will give a lower bound on the unknotting number of certain satellites using knot Floer homology. This is joint work in progress with Tye Lidman and JungHwan Park.

Mon, 03 May 2021
14:15
Virtual

Compactness Results in SO(3) Atiyah-Floer Conjecture

Guangbo Xu
(Texas A&M)
Abstract

The Atiyah-Floer conjecture asserts the instanton Floer homology of a closed three-manifold (constructed via gauge theory) is isomorphic to the Lagrangian Floer homology of a pair of Lagrangian submanifolds associated to a splitting of the three manifold (constructed via symplectic geometry). This conjecture has remained open for more than three decades. In this talk I will explain two compactness results for the SO(3) case of the conjecture in the neck-stretching process. One result is related to the construction of a natural bounding chain in the Lagrangian Floer theory and a conjecture of Fukaya.

Mon, 03 May 2021
11:30
Virtual

Probing gravitational EFTs with the four-graviton amplitude

Sasha Zhiboedov
(Cern)
Abstract

We discuss constraints from perturbative unitarity and crossing on the leading contributions of the higher-dimension operators to the four-graviton amplitude in four spacetime dimensions. We focus on the leading order effect due to exchange by massive degrees of freedom which makes the amplitudes of interest IR finite. To test the constraints we obtain nontrivial effective field theory data by computing and taking the large mass expansion of the one-loop minimally-coupled four-graviton amplitude with massive particles up to spin 2 circulating in the loop. Remarkably, the leading EFT corrections to Einstein gravity of physical theories, both string theory and QFT coupled to gravity, end up in minuscule islands which are much smaller than what is suggested by the generic bounds obtained from consistency of the 2-2 graviton scattering amplitude. We discuss the underlying mechanism for this phenomenon.

Fri, 30 Apr 2021
16:15
Virtual

Organisational meeting

Further Information

In the organisational meeting we will discuss the schedule, format and contents of this term's JC, so do come along and give your input as to which interesting papers or topics we should take up. We will meet in the group gathertown.

Fri, 30 Apr 2021

15:00 - 16:00
Virtual

Sketching Persistence Diagrams, Don Sheehy

Don Sheehy
(North Carolina State)
Further Information

Don Sheehy is an Associate Professor of Computer Science at North Carolina State University.  He received his B.S.E. from Princeton University and his Ph.D. in Computer Science from Carnegie Mellon University.   He spent two years as a postdoc at Inria Saclay in France.  His research is in algorithms and data structures in computational geometry and topological data analysis.  

Abstract

Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams -- a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.

Fri, 30 Apr 2021

14:00 - 15:00

Oscillatory timeseries data sheds light on mechanisms underlying circadian timekeeping

Professor Jae Kyoung Kim
(Dept of Mathematical Sciences KAIST)
Abstract

The circadian clock generates ~24h rhythms everyday via a transcriptional-translational negative feedback loop. Although this involves the daily entry of repressor molecules into the nucleus after random diffusion through a crowded cytoplasm, the period remains extremely consistent. In this talk, I will describe how we identified a key molecular mechanism for such robustness of the circadian clock against spatio-temporal noise by analyzing spatio-temporal timeseries data of clock molecules. Furthermore, I will illustrate a systemic modeling approach that can identify hidden molecular interactions from oscillatory timeseries with an example of a circadian clock and tumorigenesis system.  Finally, I will talk about a fundamental question underlying the model-based time-series analysis: “Can we always fit a model to given timeseries data as long as the number of parameters is large?”. That is, is Von Neumann's quote “With four parameters I can fit an elephant, and with five I can make him wiggle his trunk” true?

 

Fri, 30 Apr 2021

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Giancarlo Antonucci, Thomas Babb, Yu Tian, Sophie Abrahams
(Mathematical Institute)
Thu, 29 Apr 2021
16:00
Virtual

On the isometrisability of group actions on p-spaces

Andreas Thom
(University of Dresden)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

n this talk we consider a p-isometrisability property of discrete groups. If p=2 this property is equivalent to unitarisability. We prove that any group containing a non-abelian free subgroup is not p-isometrisable for any p∈(1,∞). We also discuss some open questions and possible relations of p-isometrisability with the recently introduced Littlewood exponent Lit(Γ).

Thu, 29 Apr 2021

16:00 - 17:00

Trading with the crowd

EYAL NEUMAN
(Imperial College London)
Abstract

Abstract: We formulate and solve a multi-player stochastic differential game between financial agents who seek to cost-efficiently liquidate their position in a risky asset in the presence of jointly aggregated transient price impact on the risky asset's execution price along with taking into account a common general price predicting signal. In contrast to an interaction of the agents through purely permanent price impact as it is typically considered in the literature on multi-player price impact games, accrued transient price impact does not persist but decays over time. The unique Nash-equilibrium strategies reveal how each agent's liquidation policy adjusts the predictive trading signal for the accumulated transient price distortion induced by all other agents' price impact; and thus unfolds a direct and natural link in equilibrium between the trading signal and the agents' trading activity. We also formulate and solve the corresponding mean field game in the limit of infinitely many agents and show how the latter provides an approximate Nash-equilibrium for the finite-player game. Specifically we prove the convergence of the N-players game optimal strategy to the optimal strategy of the mean field game.     (Joint work with Moritz Voss)
 

Thu, 29 Apr 2021

16:00 - 17:00
Virtual

Nonlinear Independent Component Analysis: Identifiability, Self-Supervised Learning, and Likelihood

Aapo Hyvärinen
(University of Helsinki)
Further Information
Abstract

Unsupervised learning, in particular learning general nonlinear representations, is one of the deepest problems in machine learning. Estimating latent quantities in a generative model provides a principled framework, and has been successfully used in the linear case, especially in the form of independent component analysis (ICA). However, extending ICA to the nonlinear case has proven to be extremely difficult: A straight-forward extension is unidentifiable, i.e. it is not possible to recover those latent components that actually generated the data. Recently, we have shown that this problem can be solved by using additional information, in particular in the form of temporal structure or some additional observed variable. Our methods were originally based on "self-supervised" learning increasingly used in deep learning, but in more recent work, we have provided likelihood-based approaches. In particular, we have developed computational methods for efficient maximization of the likelihood for two variants of the model, based on variational inference or Riemannian relative gradients, respectively.

Thu, 29 Apr 2021
14:00

Regularity, stability and passivity distances for dissipative Hamiltonian systems

Volker Mehrmann
(TU Berlin)
Abstract

Dissipative Hamiltonian systems are an important class of dynamical systems that arise in all areas of science and engineering. They are a special case of port-Hamiltonian control systems. When the system is linearized arround a stationary solution one gets a linear dissipative Hamiltonian typically differential-algebraic system. Despite the fact that the system looks unstructured at first sight, it has remarkable properties.  Stability and passivity are automatic, spectral structures for purely imaginary eigenvalues, eigenvalues at infinity, and even singular blocks in the Kronecker canonical form are very restricted and furthermore the structure leads to fast and efficient iterative solution methods for asociated linear systems. When port-Hamiltonian systems are subject to (structured) perturbations, then it is important to determine the minimal allowed perturbations so that these properties are not preserved. The computation of these structured distances to instability, non-passivity, or non-regularity, is typically a very hard non-convex optimization problem. However, in the context of dissipative Hamiltonian systems, the computation becomes much easier and can even be implemented efficiently for large scale problems in combination with model reduction techniques. We will discuss these distances and the computational methods and illustrate the results via an industrial problem.

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 29 Apr 2021

12:00 - 13:00
Virtual

Bubble propagation in modified Hele-Shaw channels

Alice Thompson
(Manchester)
Abstract

The propagation of a deformable air finger or bubble into a fluid-filled channel with an imposed pressure gradient was first studied by Saffman and Taylor. Assuming large aspect ratio channels, the flow can be depth-averaged and the free-boundary problem for steady propagation solved by conformal mapping. Famously, at zero surface tension, fingers of any width may exist, but the inclusion of vanishingly small surface tension selects symmetric fingers of discrete finger widths. At finite surface tension, Vanden-Broeck later showed that other families of 'exotic' states exist, but these states are all linearly unstable.

In this talk, I will discuss the related problem of air bubble propagation into rigid channels with axially-uniform, but non-rectangular, cross-sections. By including a centred constriction in the channel, multiple modes of propagation can be stabilised, including symmetric, asymmetric and oscillatory states, with a correspondingly rich bifurcation structure. These phenomena can be predicted via depth-averaged modelling, and also observed in our experiments, with quantitative agreement between the two in appropriate parameter regimes. This agreement provides insight into the physical mechanisms underlying the observed behaviour. I will outline our efforts to understand how the system dynamics is affected by the presence of nearby unstable solution branches acting as edge states. Finally, I will discuss how feedback control and control-based continuation could be used for direct experimental observation of stable or unstable modes.

Wed, 28 Apr 2021
10:00
Virtual

A Roadmap to Graph Homology Through Finite Type Invariants

Filippos Sytilidis
(University of Oxford)
Abstract

The graph complex is a remarkable object with very rich structure and many, sometimes mysterious, connections to topology. To illustrate one such connection, I will attempt to construct a “self-linking” invariant of knots and expand on the ideas behind it.

Wed, 28 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 4 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 4: Further Topics and Directions (time permitting)

  • Regularity of solutions
  • Ergodicity
  • Pathwise approach to SPDE

 

Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: Suitable for OxPDE students, but also of interests to functional analysts, geometers, probabilists, numerical analysts and anyone who has a suitable level of prerequisite knowledge.

Tue, 27 Apr 2021
15:30
Virtual

Reversible Markov chains with nonnegative spectrum

Roberto Oliveira
(IMPA)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The title of the talk corresponds to a family of interesting random processes, which includes lazy random walks on graphs and much beyond them. Often, a key step in analysing such processes is to estimate their spectral gaps (ie. the difference between two largest eigenvalues). It is thus of interest to understand what else about the chain we can know from the spectral gap. We will present a simple comparison idea that often gives us the best possible estimates. In particular, we re-obtain and improve upon several known results on hitting, meeting, and intersection times; return probabilities; and concentration inequalities for time averages. We then specialize to the graph setting, and obtain sharp inequalities in that setting. This talk is based on work that has been in progress for far too long with Yuval Peres.

Tue, 27 Apr 2021

15:30 - 16:30
Virtual

The two-periodic Aztec diamond and matrix valued orthogonality

Arno Kuijlaars
(KU Leuven)
Further Information

Meeting links will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

I will discuss how  polynomials with a non-hermitian orthogonality on a contour in the complex plane arise in certain random tiling problems. In the case of periodic weightings the orthogonality is matrixvalued.

In work with Maurice Duits (KTH Stockholm) the Riemann-Hilbert problem for matrix valued orthogonal polynomials was used to obtain asymptotics for domino tilings of the two-periodic Aztec diamond. This model is remarkable since it gives rise to a gaseous phase, in addition to the more common solid and liquid phases.

Tue, 27 Apr 2021

15:00 - 16:00

The KK-theory perspective on noncommutative geometry

Bram Mesland
(Leiden University)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The observation that the Dirac operator on a spin manifold encodes both the Riemannian metric as well as the fundamental class in K-homology leads to the paradigm of noncommutative geometry: the viewpoint that spectral triples generalise Riemannian manifolds. To encode maps between Riemannian manifolds, one is naturally led to consider the unbounded picture of Kasparov's KK-theory. In this talk I will explain how smooth cycles in KK-theory give a natural notion of noncommutative fibration, encoding morphisms noncommutative geometry in manner compatible with index theory.

Tue, 27 Apr 2021

14:15 - 15:15
Virtual

An upper bound for the nonsolvable length of a finite group in terms of its shortest law

Orazio Puglisi
(Università degli Studi di Firenze)
Abstract

Every finite group $G$ has a normal series each of whose factors is either a solvable group or a direct product of non-abelian simple groups. The minimum number of nonsolvable factors, attained on all possible such series in G, is called the nonsolvable length $\lambda(G)$ of $G$. In recent years several authors have investigated this invariant and its relation to other relevant parameters. E.g. it has been conjectured by Khukhro and Shumyatsky (as a particular case of a more general conjecture about non-$p$-solvable length) and Larsen that, if $\nu(G)$ is the length of the shortest law holding in the finite group G, the nonsolvable length of G can be bounded above by some function of $\nu(G)$. In a joint work with Francesco Fumagalli and Felix Leinen we have confirmed this conjecture proving that the inequality $\lambda(G) < \nu(G)$ holds in every finite group $G$. This result is obtained as a consequence of a result about permutation representations of finite groups of fixed nonsolvable length. In this talk I will outline the main ideas behind the proof of our result.

Tue, 27 Apr 2021
14:00
Virtual

Maximum stationary values in directed random graphs

Guillem Perarnau
(Universitat Politecnica de Catalunya)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk we will consider the extremal values of the stationary distribution of the sparse directed configuration model. Under the assumption of linear $(2+\eta)$-moments on the in-degrees and of bounded out-degrees, we obtain tight comparisons between the maximum value of the stationary distribution and the maximum in-degree. Under the further assumption that the order statistics of the in-degrees have power-law behavior, we show that the upper tail of the stationary distribution also has power-law behavior with the same index. Moreover, these results extend to the PageRank scores of the model, thus confirming a version of the so-called power-law hypothesis. Joint work with Xing Shi Cai, Pietro Caputo and Matteo Quattropani.

Tue, 27 Apr 2021

14:00 - 15:00
Virtual

Network structure influences visibility and ranking of minorities

Fariba Karimi
(Complexity Science Hub Vienna)
Abstract

Homophily can put minority groups at a disadvantage by restricting their ability to establish connections with majority groups or to access novel information. In this talk, I show how this phenomenon is manifested in a variety of online and face-to-face social networks and what societal consequences it has on the visibility and ranking of minorities. I propose a network model with tunable homophily and group sizes and demonstrate how the ranking of nodes is affected by homophilic
behavior. I will discuss the implications of this research on algorithms and perception biases.

Tue, 27 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 3 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 3: Variational Approach to Parabolic SPDE

  • Itˆo’s formula in Hilbert spaces
  • Variational approach to monotone, coercive SPDE
  • Concrete examples
Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: The course is broadly aimed at graduate students with some knowledge of PDE theory and/or stochastic  analysis. Familiarity with measure theory and functional analysis will be useful.

Mon, 26 Apr 2021

16:00 - 17:00
Virtual

Motivic representations and finite rational points

Jay Swar
(Oxford)
Abstract

I will briefly introduce the Chabauty-Kim argument for effective finiteness results on "topologically rich enough" curves. I will then introduce the Fontaine-Mazur conjecture and show how it provides an effective proof of Faltings' Theorem.

In the case of non-CM elliptic curves minus a point, following work of Federico Amadio Guidi, I'll show how the relevant input for effective finiteness is provided by the vanishing of adjoint Selmer groups proven by Newton and Thorne.

Mon, 26 Apr 2021

16:00 - 17:00
Virtual

On the minimization of convex, variational integrals of linear growth

Lisa Beck
(University of Augsburg)
Abstract

We study the minimization of functionals of the form $$ u  \mapsto \int_\Omega  f(\nabla u) \, dx $$

with a convex integrand $f$ of linear growth (such as the area integrand), among all functions in the Sobolev space W$^{1,1}$ with prescribed boundary values. Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and might in fact fail, as it is well-known already for the non-parametric minimal surface problem. In such cases, the functional is extended suitably to the space BV of functions of bounded variation via relaxation, and for the relaxed functional one can in turn guarantee the existence of minimizers. However, in contrast to the original minimization problem, these BV minimizers might in principle have interior jump discontinuities or not attain the prescribed boundary values.

After a short introduction to the problem I want to focus on the question of regularity of BV minimizers. In past years, Sobolev regularity was established provided that the lack of ellipticity -- which is always inherent for such linear growth integrands -- is mild, while, in general, only some structure results seems to be within reach. In this regard, I will review several results which were obtained in cooperation with Miroslav Bulíček (Prague), Franz Gmeineder (Bonn), Erika Maringová (Vienna), and Thomas Schmidt (Hamburg).

Mon, 26 Apr 2021

16:00 - 17:00

Human-machine interaction models and robo-advising

THALEIA ZARIPHOPOULOU
(University of Austin Texas)
Abstract

 

In my talk, I will introduce a family of human-machine interaction (HMI) models in optimal portfolio construction (robo-advising). Modeling difficulties stem from the limited ability to quantify the human’s risk preferences and describe their evolution, but also from the fact that the stochastic environment, in which the machine optimizes, adapts to real-time incoming information that is exogenous to the human. Furthermore, the human’s risk preferences and the machine’s states may evolve at different scales. This interaction creates an adaptive cooperative game with both asymmetric and incomplete information exchange between the two parties.

As a result, challenging questions arise on, among others, how frequently the two parties should communicate, what information can the machine accurately detect, infer and predict, how the human reacts to exogenous events, how to improve the inter-linked reliability between the human and the machine, and others. Such HMI models give rise to new, non-standard optimization problems that combine adaptive stochastic control, stochastic differential games, optimal stopping, multi-scales and learning.

 

 

Mon, 26 Apr 2021

15:45 - 16:45
Virtual

Classifying simple amenable C*-algebras

Stuart White
(University of Oxford)
Abstract

C*-algebras provide non commutative analogues of locally compact Hausdorff spaces. In this talk I’ll provide a survey of the large scale project to classify simple amenable C*-algebras, indicating the role played by non commutative versions of topological ideas. No prior knowledge of C*-algebras will be assumed.

Mon, 26 Apr 2021
14:15
Virtual

Equivariant Seidel maps and a flat connection on equivariant symplectic cohomology

Todd Liebenschutz-Jones
(Oxford)
Abstract

I'll be presenting my PhD work, in which I define two new algebraic structures on the equivariant symplectic cohomology of a convex symplectic manifold. The first is a collection of shift operators which generalise the shift operators on equivariant quantum cohomology in algebraic geometry. That is, given a Hamiltonian action of the torus T, we assign to a cocharacter of T an endomorphism of (S1 × T)-equivariant Floer cohomology based on the equivariant Floer Seidel map. The second is a connection which is a multivariate version of Seidel’s q-connection on S1 -equivariant Floer cohomology and generalises the Dubrovin connection on equivariant quantum cohomology.

Mon, 26 Apr 2021
12:45
Virtual

Calculation of zeta functions for one parameter families of Calabi-Yau manifolds

Philip Candelas
(Oxford)
Abstract

The periods of a Calabi-Yau manifold are of interest both to number theorists and to physicists. To a number theorist the primary object of interest is the zeta function. I will explain what this is, and why this is of interest also to physicists. For applications it is important to be able to calculate the local zeta function for many primes p. I will set out a method, adapted from a procedure proposed by Alan Lauder that makes the computation of the zeta function practical, in this sense, and comment on the form of the results. This talk is based largely on the recent paper hepth 2104.07816 and presents joint work with Xenia de la Ossa and Duco van Straten.

Wed, 21 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 2 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 2: Variational Approach to Deterministic PDE

  • Variational approach to linear parabolic equations
  • Variational approaches to non-linear parabolic equations
Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: The course is broadly aimed at graduate students with some knowledge of PDE theory and/or stochastic  analysis. Familiarity with measure theory and functional analysis will be useful.

Wed, 21 Apr 2021
09:00
Virtual

Learning developmental path signature features with deep learning framework for infant cognitive scores prediction

Xin Zhang
(South China University of Technology)
Further Information
Abstract

Path signature has unique advantages on extracting high-order differential features of sequential data. Our team has been studying the path signature theory and actively applied it to various applications, including infant cognitive score prediction, human motion recognition, hand-written character recognition, hand-written text line recognition and writer identification etc. In this talk, I will share our most recent works on infant cognitive score prediction using deep path signature. The cognitive score can reveal individual’s abilities on intelligence, motion, language abilities. Recent research discovered that the cognitive ability is closely related with individual’s cortical structure and its development. We have proposed two frameworks to predict the cognitive score with different path signature features. For the first framework, we construct the temporal path signature along the age growth and extract signature features of developmental infant cortical features. By incorporating the cortical path signature into the multi-stream deep learning model, the individual cognitive score can be predicted with missing data issues. For the second framework, we propose deep path signature algorithm to compute the developmental feature and obtain the developmental connectivity matrix. Then we have designed the graph convolutional network for the score prediction. These two frameworks have been tested on two in-house cognitive data sets and reached the state-of-the-art results.

Tue, 20 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 1 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 1:  Introduction and Preliminaries

  • Introduction to randomness in PDE
  • Stochastic analysis in infinite dimensions
Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: The course is broadly aimed at graduate students with some knowledge of PDE theory and/or stochastic  analysis. Familiarity with measure theory and functional analysis will be useful.

Lecture 1:  Introduction and Preliminaries

  • Introduction to randomness in PDE
  • Stochastic analysis in infinite dimensions

Literature: [DKM+09, Hai09, Par07, PR07, DPZ14]

Lecture 2: Variational Approach to Deterministic PDE

  • Variational approach to linear parabolic equations
  • Variational approaches to non-linear parabolic equations

Literature: [Par07, Eva10]

Lecture 3: Variational Approach to Parabolic SPDE

  • Itˆo’s formula in Hilbert spaces
  • Variational approach to monotone, coercive SPDE
  • Concrete examples

Literature: [PR07, Par07]

Lecture 4: Further Topics and Directions (time permitting)

  • Regularity of solutions
  • Ergodicity
  • Pathwise approach to SPDE

Literature: [Hai09, DKM+09, DPZ96, Hai14, GIP15]

References

[DKM+09] Robert Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart, and Yimin Xiao. A minicourse on stochastic partial differential equations, vol- ume 1962 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009.

[DPZ96] G. Da Prato and J. Zabczyk. Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Note Series. Cambridge University Press, 1996.

[DPZ14] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 2014.

[Eva10] Lawrence Craig Evans. Partial Differential Equations. American Mathe- matical Society, 2010.

[GIP15] Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski. Paracon- trolled distributions and singular PDEs. Forum Math. Pi, 3:75, 2015.

[Hai09]  Martin Hairer.  An Introduction to Stochastic PDEs.  Technical  report, The University of Warwick / Courant Institute, 2009. Available at: http://hairer.org/notes/SPDEs.pdf

[Hai14] M. Hairer. A theory of regularity structures. Inventiones mathematicae, 198(2):269–504, 2014.

[Par07] Etienne  Pardoux. Stochastic  partial  differential  equations.  https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.4805&rep=rep1&type=pdf  2007.

[PR07] Claudia Pr´evˆot and Michael R¨ockner. A concise course on stochastic partial differential equations. Springer, 2007.

Mon, 29 Mar 2021

16:00 - 17:00
Virtual

Intro to Lawrence-Venkatesh's proof of Mordell-Faltings

Jay Swar
Abstract

This talk will be the first in a spin-off series on the Lawrence-Venkatesh approach to showing that every hyperbolic curve$/K$ has finitely many $K$-points. In this talk, we will give the overall outline of the approach and prove several of  the preliminary results, such as Faltings' finiteness theorem for semisimple Galois representations.

Fri, 26 Mar 2021

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Huining Yang, Deqing Jiang, Joe Roberts
(Mathematical Institute)
Thu, 25 Mar 2021

16:00 - 17:00
Virtual

Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions

Fabrice Baudoin
(University of Connecticut)
Further Information
Abstract

We study several matrix diffusion processes constructed from a unitary Brownian motion. In particular, we use the Stiefel fibration to lift the Brownian motion of the complex Grass- mannian to the complex Stiefel manifold and deduce a skew-product decomposition of the Stiefel Brownian motion. As an application, we prove asymptotic laws for the determinants of the block entries of the unitary Brownian motion.

Tue, 23 Mar 2021
16:00

Algebraic branch points at all loop orders from positive kinematics and wall crossing

Aidan Herderschee
(University of Michigan)
Abstract
I will give an introduction to the connection between the positive kinematic region and the analytic structure of integrated amplitudes in $\mathcal{N}=4$ SYM at all loop orders. I will first review known results for 6-point and 7-point amplitudes and how cluster algebras provide a very precise understanding of the positive kinematic region. I will then move onto 8-point amplitudes, where a number of phenomena appear not suited to the cluster algebra framework. For example, logarithmic branch points associated with algebraic functions appear at two loops in the 8-point NMHV amplitude. I argue that wall-crossing is a good framework to systematically study these algebraic branch points. Wall crossing has appeared in a number of research areas, most notably in study of moduli spaces of $\mathcal{N}=2$ gauge theories and the BDS ansatz.  In the context of $\mathcal{N}=4$ SYM, we see that wall crossing provides a new way to systematically study the boundary structure of the positive kinematic region. I conclude with a list of results for the 8-point amplitude. 
 
This talk will focus mostly on Sections 1 and 2 of 2102.03611. I will give a brief summary of Section 3 at the end of the talk
Tue, 16 Mar 2021

17:00 - 18:00

From one extreme to another: the statistics of extreme events - Jon Keating

Further Information

Oxford Mathematics Public Lecture
Tuesday 16 March 2021
5.00-6.00pm

Jon Keating will discuss the statistics of rare, extreme events in various contexts, including: evaluating performance at the Olympics; explaining how glasses freeze; illustrating why computers are more effective than expected at learning; and understanding the Riemann zeta-function, the mathematical object that encodes the mysterious distribution of the prime numbers. 

Jon Keating is Sedleian Professor of Natural Philosophy in the University of Oxford and a Fellow of The Queen's College.

Watch live (no need to register and it will stay up afterwards):

Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 16 Mar 2021
14:15
Virtual

The Quot scheme Quotˡ(E)

Samuel Stark
(Imperial College London)
Abstract

Grothendieck's Quot schemes — moduli spaces of quotient sheaves — are fundamental objects in algebraic geometry, but we know very little about them. This talk will focus on a relatively simple special case: the Quot scheme Quotˡ(E) of length l quotients of a vector bundle E of rank r on a smooth surface S. The scheme Quotˡ(E) is a cross of the Hilbert scheme of points of S (E=O) and the projectivisation of E (l=1); it carries a virtual fundamental class, and if l and r are at least 2, then Quotˡ(E) is singular. I will explain how the ADHM description of Quotˡ(E) provides a conjectural description of the singularities, and show how they can be resolved in the l=2 case. Furthermore, I will describe the relation between Quotˡ(E) and Quotˡ of a quotient of E, prove a functoriality result for the virtual fundamental class, and use it to compute certain tautological integrals over Quotˡ(E).

Mon, 15 Mar 2021

15:45 - 16:45
Virtual

Unknot recognition in quasi-polynomial time

Marc Lackenby
(University of Oxford)
Abstract

I will outline a new algorithm for unknot recognition that runs in quasi-polynomial time. The input is a diagram of a knot with n crossings, and the running time is n^{O(log n)}. The algorithm uses hierarchies, normal surfaces and Heegaard splittings.

Fri, 12 Mar 2021
16:00
Virtual

Boundaries, Factorisation & Mirror Duality

Daniel Zhang
(Cambridge)
Abstract

I will review recent work on N=(2,2) boundary conditions of 3d
N=4 theories which mimic isolated massive vacua at infinity. Subsets of
local operators supported on these boundary conditions form lowest
weight Verma modules over the quantised bulk Higgs and Coulomb branch
chiral rings. The equivariant supersymmetric Casimir energy is shown to
encode the boundary ’t Hooft anomaly, and plays the role of lowest
weights in these modules. I will focus on a key observable associated to
these boundary conditions; the hemisphere partition function, and apply
them to the holomorphic factorisation of closed 3-manifold partition
functions and indices. This yields new “IR formulae” for partition
functions on closed 3-manifolds in terms of Verma characters. I will
also discuss ongoing work on connections to enumerative geometry, and
the construction of elliptic stable envelopes of Aganagic and Okounkov,
in particular their physical manifestation via mirror duality
interfaces.

This talk is based on 2010.09741 and ongoing work with Mathew Bullimore
and Samuel Crew.

Fri, 12 Mar 2021

16:00 - 17:00
Virtual

North Meets South

Elena Gal and Alexandre Bovet
Abstract

Speaker: Elena Gal (4pm)

Title: Associativity and Geometry

Abstract: An operation # that satisfies a#(b#c)=(a#b)#c is called "associative". Associativity is "common" - if we are asked to give an example of operation we are more likely to come up with one that has this property. However if we dig a bit deeper we encounter in geometry, topology and modern physics many operations that are not associative "on the nose" but rather up to an equivalence. We will talk about how to describe and work with this higher associativity notion.

Speaker: Alexandre Bovet (4:30pm)

Title: Investigating disinformation in social media with network science

Abstract:
While disinformation and propaganda have existed since ancient times, their importance and influence in the age of
social media is still not clear.  We investigate the spread of disinformation and traditional misinformation in Twitter in the context of the 2016 and 2020 US presidential elections. We analyse the information diffusion networks by reconstructing the retweet networks corresponding to each type of news and the top news spreaders of each network are identified. Our investigation provides new insights into the dynamics of news diffusion in Twitter, namely our results suggests that disinformation is governed by a different diffusion mechanism than traditional centre and left-leaning news. Centre and left leaning traditional news diffusion is driven by a small number of influential users, mainly journalists, and follow a diffusion cascade in a network with heterogeneous degree distribution which is typical of diffusion in social networks, while the diffusion of disinformation seems to not be controlled by a small set of users but rather to take place in tightly connected clusters of users that do not influence the rest of Twitter activity. We also investigate how the situation evolved between 2016 and 2020 and how the top news spreaders from the different news categories have driven the polarization of the Twitter ideological landscape during this time.

Fri, 12 Mar 2021

15:00 - 16:00
Virtual

Chain complex reduction via fast digraph traversal

Leon Lampret
(Queen Mary University London)
Abstract

Reducing a chain complex (whilst preserving its homotopy-type) using algebraic Morse theory ([1, 2, 3]) gives the same end-result as Gaussian elimination, but AMT does it only on certain rows/columns and with several pivots (in all matrices simultaneously). Crucially, instead of doing costly row/column operations on a sparse matrix, it computes traversals of a bipartite digraph. This significantly reduces the running time and memory load (smaller fill-in and coefficient growth of the matrices). However, computing with AMT requires the construction of a valid set of pivots (called a Morse matching).

In [4], we discover a family of Morse matchings on any chain complex of free modules of finite rank. We show that every acyclic matching is a subset of some member of our family, so all maximal Morse matchings are of this type.

Both the input and output of AMT are chain complexes, so the procedure can be used iteratively. When working over a field or a local PID, this process ends in a chain complex with zero matrices, which produces homology. However, even over more general rings, the process often reveals homology, or at least reduces the complex so much that other algorithms can finish the job. Moreover, it also returns homotopy equivalences to the reduced complexes, which reveal the generators of homology and the induced maps $H_{*}(\varphi)$. 

We design a new algorithm for reducing a chain complex and implement it in MATHEMATICA. We test that it outperforms other CASs. As a special case, given a sparse matrix over any field, the algorithm offers a new way of computing the rank and a sparse basis of the kernel (or null space), cokernel (or quotient space, or complementary subspace), image, preimage, sum and intersection subspace. It outperforms built-in algorithms in other CASs.

References

[1]  M. Jöllenbeck, Algebraic Discrete Morse Theory and Applications to Commutative Algebra, Thesis, (2005).

[2]  D.N. Kozlov, Discrete Morse theory for free chain complexes, C. R. Math. 340 (2005), no. 12, 867–872.

[3]  E. Sköldberg, Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006), no. 1, 115–129.

[4]  L. Lampret, Chain complex reduction via fast digraph traversal, arXiv:1903.00783.

Fri, 12 Mar 2021

14:00 - 15:00
Virtual

Cluster algebras and categorification

Tom Zielinski
(University of Oxford)
Abstract

Introduced by Fomin and Zelevinsky in 2002, cluster algebras have become ubiquitous in algebra, combinatorics and geometry. In this talk, I'll introduce the notion of a cluster algebra and present the approach of Kang-Kashiwara-Kim-Oh to categorify a large class of them arising from quantum groups. Time allowing, I will explain some recent developments related to the coherent Satake category.

Fri, 12 Mar 2021

14:00 - 15:00
Virtual

Deep learning for molecular physics

Professor Frank Noe
(Dept of Mathematics & Computer Science Freie Universitat Berlin)
Abstract

There has been a surge of interest in machine learning in the past few years, and deep learning techniques are more and more integrated into
the way we do quantitative science. A particularly exciting case for deep learning is molecular physics, where some of the "superpowers" of
machine learning can make a real difference in addressing hard and fundamental computational problems - on the other hand the rigorous
physical footing of these problems guides us in how to pose the learning problem and making the design decisions for the learning architecture.
In this lecture I will review some of our recent contributions in marrying deep learning with statistical mechanics, rare-event sampling
and quantum mechanics.

Fri, 12 Mar 2021

12:00 - 13:00

The Metric is All You Need (for Disentangling)

David Pfau
(DeepMind)
Abstract

Learning a representation from data that disentangles different factors of variation is hypothesized to be a critical ingredient for unsupervised learning. Defining disentangling is challenging - a "symmetry-based" definition was provided by Higgins et al. (2018), but no prescription was given for how to learn such a representation. We present a novel nonparametric algorithm, the Geometric Manifold Component Estimator (GEOMANCER), which partially answers the question of how to implement symmetry-based disentangling. We show that fully unsupervised factorization of a data manifold is possible if the true metric of the manifold is known and each factor manifold has nontrivial holonomy – for example, rotation in 3D. Our algorithm works by estimating the subspaces that are invariant under random walk diffusion, giving an approximation to the de Rham decomposition from differential geometry. We demonstrate the efficacy of GEOMANCER on several complex synthetic manifolds. Our work reduces the question of whether unsupervised disentangling is possible to the question of whether unsupervised metric learning is possible, providing a unifying insight into the geometric nature of representation learning.