The Bernstein-Gelfand-Gelfand machinery and applications
Abstract
In this talk, we first review the de Rham complex and the finite element exterior calculus, a cohomological framework for structure-preserving discretisation of PDEs. From de Rham complexes, we derive other complexes with applications in elasticity, geometry and general relativity. The derivation, inspired by the Bernstein-Gelfand-Gelfand (BGG) construction, also provides a general machinery to establish results for tensor-valued problems (e.g., elasticity) from de Rham complexes (e.g., electromagnetism and fluid mechanics). We discuss some applications and progress in this direction, including mechanics models and the construction of bounded homotopy operators (Poincaré integrals) and finite elements.