Mon, 22 Feb 2021

16:00 - 17:00
Virtual

Wild Galois Representations

Nirvana Coppola
(Bristol)
Abstract

Let C be an elliptic or hyperelliptic curve over a p-adic field K. Then C is equipped with a Galois representation, given by the action of the absolute Galois group of K on the Tate module of C. The behaviour of this representation depends on the reduction type of C. We will focus on the case of C having bad reduction, and acquiring potentially good reduction over a wildly ramified extension of K. We will show that, if C is an elliptic curve, the Galois representation can be completely determined in this case, thus allowing one to fully classify Galois representations attached to elliptic curves. Furthermore, the same can be done for a special family of hyperelliptic curves, obtaining a result which is surprisingly similar to that for the corresponding elliptic curves case.
 

Mon, 22 Feb 2021

16:00 - 17:00
Virtual

Quantitative stability for minimizing Yamabe metrics

Robin Neumayer
(Northwestern University)
Abstract

The Yamabe problem asks whether, given a closed Riemannian manifold, one can find a conformal metric of constant scalar curvature (CSC). An affirmative answer was given by Schoen in 1984, following contributions from Yamabe, Trudinger, and Aubin, by establishing the existence of a function that minimizes the so-called Yamabe energy functional; the minimizing function corresponds to the conformal factor of the CSC metric.

We address the quantitative stability of minimizing Yamabe metrics. On any closed Riemannian manifold we show—in a quantitative sense—that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close to a CSC metric. Generically, this closeness is controlled quadratically by the Yamabe energy deficit. However, we construct an example demonstrating that this quadratic estimate is false in the general. This is joint work with Max Engelstein and Luca Spolaor.

Mon, 22 Feb 2021

15:45 - 16:45
Virtual

Chromatic homotopy theory and algebraic K-theory

Akhil Matthew
(University of Chicago)
Abstract

I will give an overview of the interactions between chromatic homotopy theory and the algebraic K-theory of ring spectra, especially around the subject of Ausoni-Rognes's principle of "chromatic redshift," and some of the recent advances in this field.

Mon, 22 Feb 2021
14:15
Virtual

Spaces of metrics of positive scalar curvature on manifolds with boundary

Christian Bär
(University of Potsdam)
Abstract

Unlike for closed manifolds, the existence of positive scalar curvature (psc) metrics on connected manifolds with
nonempty boundary is unobstructed. We study and compare the spaces of psc metrics on such manifolds with various
conditions along the boundary: H ≥ 0, H = 0, H > 0, II = 0, doubling, product structure. Here H stands for the
mean curvature of the boundary and II for its second fundamental form. "Doubling" means that the doubled metric
on the doubled manifold (along the boundary) is smooth and "product structure" means that near the boundary the
metric has product form. We show that many, but not all of the obvious inclusions are weak homotopy equivalences.
In particular, we will see that if the manifold carries a psc metric with H ≥ 0, then it also carries one which is
doubling but not necessarily one which has product structure. This is joint work with Bernhard Hanke.

Mon, 22 Feb 2021
12:45
Virtual

The interplay between global and local anomalies

Joe Davighi
(University of Cambridge)
Abstract

Chiral fermion anomalies in any spacetime dimension are computed by evaluating an eta-invariant on a closed manifold in one higher dimension. The APS index theorem then implies that both local and global gauge anomalies are detected by bordism invariants, each being classified by certain abelian groups that I will identify. Mathematically, these groups are connected via a short exact sequence that splits non-canonically. This enables one to relate global anomalies in one gauge theory to local anomalies in another, by which we revive (from the bordism perspective) an old idea of Elitzur and Nair for deriving global anomalies. As an example, I will show how the SU(2) anomaly in 4d can be derived from a local anomaly by embedding SU(2) in U(2).

Fri, 19 Feb 2021
16:00
Virtual

The statistical mechanics of near-extremal and near-BPS black holes

Luca Iliesiu
(Stanford University)
Abstract

An important open question in black hole thermodynamics is about the existence of a "mass gap" between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this talk, I will discuss how to reliably compute the partition function of 4d Reissner-Nordstrom near-extremal black holes at temperature scales comparable to the conjectured gap. I will show that the density of states at fixed charge does not exhibit a gap in the simplest gravitational non-supersymmetric theories; rather, at the expected gap energy scale, we see a continuum of states whose meaning we will extensively discuss. Finally, I will present a similar computation for nearly-BPS black holes in 4d N=2 supergravity. As opposed to their non-supersymmetric counterparts, such black holes do in fact exhibit a gap consistent with various string theory predictions.

Fri, 19 Feb 2021

14:00 - 15:00
Virtual

Rational Cherednik algebra of complex reflection group and weight space decomposition of its standard modules

Xin Zhao
(University of Oxford)
Abstract

This is an elementary talk introducing the rational Cherednik algebra and its representations. Especially, we are interested in the case of complex reflection group. A tool called the Dunkl-Opdam subalgebra is used to decompose the standard modules into weight spaces and to construct the correspondence with the partitions of integers. If time allows, we might explore the concept of unitary representation and what condition a representation needs to satisfy to be qualified as one.

Fri, 19 Feb 2021

14:00 - 15:00
Virtual

Telling a mathematical story

Dr Vicky Neale
Abstract

Mathematicians need to talk and write about their mathematics.  This includes undergraduates and MSc students, who might be writing a dissertation or project report, preparing a presentation on a summer research project, or preparing for a job interview.  It can be helpful to think of this as a form of storytelling, as this can lead to more effective communication.  For a story to be engaging you also need to know your audience.  In this interactive session, we'll discuss what we mean by telling a mathematical story, give you some top tips from our experience, and give you a chance to think about how you might put this into practice.

Fri, 19 Feb 2021

14:00 - 15:00
Virtual

Mathematical models of targeted cancer therapies

Professor Dominik Wodarz
(Department of Population Health and Disease Prevention University of California Irvine)
Abstract

The talk will discuss the use of mathematical models for understanding targeted cancer therapies. One area of focus is the treatment of chronic lymphocytic leukemia with tyrosine kinase inhibitors. I will explore how mathematical approaches have helped elucidate the mechanism of action of the targeted drug ibrutinib, and will discuss how evolutionary models, based on patient-specific parameters, can make individualized predictions about treatment outcomes. Another focus of the talk is the use of oncolytic viruses to kill cancer cells and drive cancers into remission. These are viruses that specifically infect cancer cells and spread throughout tumors. I will discuss mathematical models applied to experimental data that analyze virus spread in a spatially structured setting, concentrating on the interactions of the virus with innate immune mechanisms that determine the outcome of virus spread.  

Fri, 19 Feb 2021

12:00 - 13:00

The Unlimited Sampling Approach to Computational Sensing and Imaging

Ayush Bhandari
(Imperial College, London)
Abstract

Digital data capture is the backbone of all modern day systems and “Digital Revolution” has been aptly termed as the Third Industrial Revolution. Underpinning the digital representation is the Shannon-Nyquist sampling theorem and more recent developments include compressive sensing approaches. The fact that there is a physical limit to which sensors can measure amplitudes poses a fundamental bottleneck when it comes to leveraging the performance guaranteed by recovery algorithms. In practice, whenever a physical signal exceeds the maximum recordable range, the sensor saturates, resulting in permanent information loss. Examples include (a) dosimeter saturation during the Chernobyl reactor accident, reporting radiation levels far lower than the true value and (b) loss of visual cues in self-driving cars coming out of a tunnel (due to sudden exposure to light). 

 

To reconcile this gap between theory and practice, we introduce the Unlimited Sensing framework or the USF that is based on a co-design of hardware and algorithms. On the hardware front, our work is based on a radically different analog-to-digital converter (ADC) design, which allows for the ADCs to produce modulo or folded samples. On the algorithms front, we develop new, mathematically guaranteed recovery strategies.  

 

In the first part of this talk, we prove a sampling theorem akin to the Shannon-Nyquist criterion. We show that, remarkably, despite the non-linearity in sensing pipeline, the sampling rate only depends on the signal’s bandwidth. Our theory is complemented with a stable recovery algorithm. Beyond the theoretical results, we will also present a hardware demo that shows our approach in action.

 

Moving further, we reinterpret the unlimited sensing framework as a generalized linear model that motivates a new class of inverse problems. We conclude this talk by presenting new results in the context of single-shot high-dynamic-range (HDR) imaging, sensor array processing and HDR tomography based on the modulo Radon transform.

Fri, 19 Feb 2021

10:00 - 11:00
Virtual

Physically based mathematical models, data and machine learning methods with applications to flood prediction

Steve Walker
(Arup)
Abstract

There are strengths and weaknesses to both mathematical models and machine learning approaches, for instance mathematical models may be difficult to fully specify or become intractable when representing complex natural or built environments whilst machine learning models can be inscrutable (“black box”) and perform poorly when driven outside of the range of data they have been trained on. At the same time measured data from sensors is becoming increasing available.

We have been working to try and bring the best of both worlds together and we would like to discuss our work and the challenges it presents. Such challenges include model simplification or reduction, model performance in previously unobserved extreme conditions, quantification of uncertainty and techniques to parameterise mathematical models from data.

Thu, 18 Feb 2021

17:00 - 18:00
Virtual

Quantitative inviscid limits and universal shock formation in scalar conservation laws

Cole Graham
(Stanford University)
Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

We explore one facet of an old problem: the approximation of hyperbolic conservation laws by viscous counterparts. While qualitative convergence results are well-known, quantitative rates for the inviscid limit are less common. In this talk, we consider the simplest case: a one-dimensional scalar strictly-convex conservation law started from "generic" smooth initial data. Using a matched asymptotic expansion, we quantitatively control the inviscid limit up to the time of first shock. We conclude that the inviscid limit has a universal character near the first shock. This is joint work with Sanchit Chaturvedi.

Thu, 18 Feb 2021

16:45 - 17:30
Virtual

Co-universal C*-algebras for product systems

Evgenios Kakariadis
(University of Newcastle)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Continuous product systems were introduced and studied by Arveson in the late 1980s. The study of their discrete analogues started with the work of Dinh in the 1990’s and it was formalized by Fowler in 2002. Discrete product systems are semigroup versions of C*-correspondences, that allow for a joint study of many fundamental C*-algebras, including those which come from C*-correspondences, higher rank graphs and elsewhere.
Katsura’s covariant relations have been proven to give the correct Cuntz-type C*-algebra for a single C*-correspondence X. One of the great advantages of Katsura's Cuntz-Pimsner C*-algebra is its co-universality for the class of gauge-compatible injective representations of X. In the late 2000s Carlsen-Larsen-Sims-Vittadello raised the question of existence of such a co-universal object in the context of product systems. In their work, Carlsen-Larsen-Sims-Vittadello provided an affirmative answer for quasi-lattices, with additional injectivity assumptions on X. The general case has remained open and will be addressed in these talk using tools from non-selfadjoint operator algebra theory.

Thu, 18 Feb 2021

16:00 - 17:00

Wall-crossing for Hilbert schemes on CY 4-folds

Arkadij Bojko
Abstract

Invariants counting sheaves on Calabi--Yau 4-folds are obtained by virtual integrals over moduli spaces. These are expressed in terms of virtual fundamental classes, which conjecturally fit into
a wall-crossing framework proposed by Joyce. I will review the construction of vertex algebras in terms of which one can express the WCF.  I describe how to use  them to obtain explicit results for Hilbert schemes of points. As a consequence, I reduce multiple conjectures to a technical proof of the WCF. Surprisingly, one gets a complete correspondence between invariants of Hilbert schemes of CY 4-folds and elliptic surfaces.
 

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGRiMTM1ZjQtZWNi…

Thu, 18 Feb 2021

16:00 - 16:45
Virtual

A duality theorem for non-unital operator systems

Sam Kim
(University of Glasgow)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The recent work on nc convex sets of Davidson, Kennedy, and Shamovich show that there is a rich interplay between the category of operator systems and the category of compact nc convex sets, leading to new insights even in the case of C*-algebras. The category of nc convex sets are a generalization of the usual notion of a compact convex set that provides meaningful connections between convex theoretic notions and notions in operator system theory. In this talk, we present a duality theorem for norm closed self-adjoint subspaces of B(H) that do not necessarily contain the unit. Using this duality, we will describe various C*-algebraic and operator system theoretic notions such as simplicity and subkernels in terms of their convex structure. This is joint work with Matthew Kennedy and Nicholas Manor.

Thu, 18 Feb 2021

14:00 - 15:00
Virtual

The Superconformal Index

Enrico Marchetto
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers for access to meeting (Carmen Jorge-Diaz, Connor Behan or Sujay Nair)

Thu, 18 Feb 2021
14:00
Virtual

The reference map technique for simulating complex materials and multi-body interactions

Chris Rycroft
(Harvard University)
Abstract

Conventional computational methods often create a dilemma for fluid-structure interaction problems. Typically, solids are simulated using a Lagrangian approach with grid that moves with the material, whereas fluids are simulated using an Eulerian approach with a fixed spatial grid, requiring some type of interfacial coupling between the two different perspectives. Here, a fully Eulerian method for simulating structures immersed in a fluid will be presented. By introducing a reference map variable to model finite-deformation constitutive relations in the structures on the same grid as the fluid, the interfacial coupling problem is highly simplified. The method is particularly well suited for simulating soft, highly-deformable materials and many-body contact problems, and several examples will be presented.

 

This is joint work with Ken Kamrin (MIT).

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 18 Feb 2021

12:00 - 13:00
Virtual

Identifiability and inference for models in mathematical biology.

Professor Ruth Baker
(University of Oxford)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of quantitative data now being generated. This sets a new challenge for the field – to develop, calibrate and analyse new, biologically realistic models to interpret these data. In this talk I will showcase how quantitative comparisons between models and data can help tease apart subtle details of biological mechanisms, as well as present some steps we have taken to tackle the mathematical challenges in developing models that are both identifiable and can be efficiently calibrated to quantitative data.

Wed, 17 Feb 2021
10:00
Virtual

Introduction to L^2 homology

Sam Fisher
(Oxford University)
Abstract

This talk will be an introduction to L^2 homology, which is roughly "square-summable" homology. We begin by defining the L^2 homology of a G-CW complex (a CW complex with a cellular G-action), and we will discuss some applications of these invariants to group theory and topology. We will then focus on a criterion of Wise, which proves the vanishing of the 2nd L^2 Betti number in combinatorial CW-complexes with elementary methods. If time permits, we will also introduce Wise's energy criterion.
 

Wed, 17 Feb 2021

09:00 - 10:00
Virtual

Path Development and the Length Conjecture

Xi Geng
(University of Melbourne)
Further Information
Abstract

It was implicitly conjectured by Hambly-Lyons in 2010, which was made explicit by Chang-Lyons-Ni in 2018, that the length of a tree-reduced path with bounded variation can be recovered from its signature asymptotics. Apart from its intrinsic elegance, understanding such a phenomenon is also important for the study of signature lower bounds and may shed light on more general signature inversion properties. In this talk, we discuss how the idea of path development onto suitably chosen Lie groups can be used to study this problem as well as its rough path analogue.

Tue, 16 Feb 2021

17:00 - 18:30

Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl & Melvyn Bragg

(University of Oxford and University of Bonn)
Further Information

Oxford Mathematics Online Public Lecture in Partnership with Wadham College celebrating Roger Penrose's Nobel Prize

Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl and Melvyn Bragg
Tuesday 16 February 2021
5.00-6.30pm

Dennis Lehmkuhl: From Schwarzschild’s singularity and Hadamard’s catastrophe to Penrose’s trapped surfaces
Roger Penrose: Spacetime singularities - to be or not to be?
Roger Penrose & Melvyn Bragg: In conversation

What are spacetime singularities? Do they exist in nature or are they artefacts of our theoretical reasoning? Most importantly, if we accept the general theory of relativity, our best theory of space, time, and gravity, do we then also have to accept the existence of spacetime singularities?

In this special lecture, Sir Roger Penrose, 2020 Nobel Laureate for Physics, will give an extended version of his Nobel Prize Lecture, describing his path to the first general singularity theorem of general relativity, and to the ideas that sprung from this theorem, notably the basis for the existence of Black Holes. He will be introduced by Dennis Lehmkuhl whose talk will describe how the concept of a spacetime singularity developed prior to Roger's work, in work by Einstein and others, and how much of a game changer the first singularity theorem really was.

The lectures will be followed by an interview with Roger by Melvyn Bragg.

Roger Penrose is the 2020 Nobel Laureate for Physics and Emeritus Rouse Ball Professor in Oxford; Dennis Lehmkuhl is Lichtenberg Professor of History and Philosophy of Physics at the University of Bonn and one of the Editors of Albert Einstein's Collected Papers: Melvyn Bragg is a broadcaster and author best known for his work as editor and presenter of the South Bank Show and In Our Time.

Watch online (no need to register - and the lecture will stay up on all channels afterwards):
Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube

The Oxford Mathematics Public Lecture are generously supported by XTX Markets

[[{"fid":"60543","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Tue, 16 Feb 2021
15:30
Virtual

Some unusual extremal problems in convexity and combinatorics

Ramon van Handel
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

It is a basic fact of convexity that the volume of convex bodies is a polynomial, whose coefficients contain many familiar geometric parameters as special cases. A fundamental result of convex geometry, the Alexandrov-Fenchel inequality, states that these coefficients are log-concave. This proves to have striking connections with other areas of mathematics: for example, the appearance of log-concave sequences in many combinatorial problems may be understood as a consequence of the Alexandrov-Fenchel inequality and its algebraic analogues.

There is a long-standing problem surrounding the Alexandrov-Fenchel inequality that has remained open since the original works of Minkowski (1903) and Alexandrov (1937): in what cases is equality attained? In convexity, this question corresponds to the solution of certain unusual isoperimetric problems, whose extremal bodies turn out to be numerous and strikingly bizarre. In combinatorics, an answer to this question would provide nontrivial information on the type of log-concave sequences that can arise in combinatorial applications. In recent work with Y. Shenfeld, we succeeded to settle the equality cases completely in the setting of convex polytopes. I will aim to describe this result, and to illustrate its potential combinatorial implications through a question of Stanley on the combinatorics of partially ordered sets.

Tue, 16 Feb 2021

15:30 - 16:30
Virtual

Critically stable network economies

Jose Moran
(University of Oxford)
Abstract

Will a large economy be stable? In this talk, I will present a model for a network economy where firms' productions are interdependent, and study the conditions under which such input-output networks admit a competitive economic equilibrium, where markets clear and profits are zero. Insights from random matrix theory allow to understand some of the emergent properties of this equilibrium and to provide a classification for the different types of crises it can be subject to. After this, I will endow the model with dynamics, and present results with strong links to generalised Lotka-Volterra models in theoretical ecology, where inter-species interactions are modelled with random matrices and where the system naturally self-organises into a critical state. In both cases, the stationary points must consist of positive species populations/prices/outputs. Building on these ideas, I will show the key concepts behind an economic agent-based model that can exhibit convergence to equilibrium, limit cycles and chaotic dynamics, as well as a phase of spontaneous crises whose origin can be understood using "semi-linear" dynamics.

Tue, 16 Feb 2021

14:00 - 15:00
Virtual

FFTA: Public risk perception and emotion on Twitter during the Covid-19 pandemic

Joel Dyer and Blas Kolic
(Institute for New Economic Thinking)
Abstract

Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from ∼20 million unique Covid-19-related tweets from 12 countries posted between 10th March and 14th June 2020. We find evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber–Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.

Tue, 16 Feb 2021
14:00
Virtual

Geodesic Geometry on Graphs

Nati Linial
(Hebrew University of Jerusalem)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We investigate a graph theoretic analog of geodesic geometry. In a graph $G=(V,E)$ we consider a system of paths $P=\{P_{u,v}| u,v\in V\}$ where $P_{u,v}$ connects vertices $u$ and $v$. This system is consistent in that if vertices $y,z$ are in $P_{u,v}$, then the sub-path of $P_{u,v}$ between them coincides with $P_{y,z}$. A map $w:E\to(0,\infty)$ is said to induce $P$ if for every $u,v\in V$ the path $P_{u,v}$ is $w$-geodesic. We say that $G$ is metrizable if every consistent path system is induced by some such $w$. As we show, metrizable graphs are very rare, whereas there exist infinitely many 2-connected metrizable graphs.
 

Mon, 15 Feb 2021

16:00 - 17:00

Thermal boundaries for energy superdiffusion

STEFANO OLLA
(Ceremade Dauphin)
Abstract

We consider a chain of oscillators with one particle in contact with a thermostat at temperature T. The thermostat is modeled by a Langevin dynamics or a renewal of the velocity with a gaussian random variable with variance T. The dynamics of the oscillators is perturbed by a random exchange on velocities between nearest neighbor particles.
The (thermal) energy has a macroscopic superdiffusive behavior governed by a fractional heat equation (i.e. with a fractional Laplacian). The microscopic thermostat impose a particular boundary condition to the fractional Laplacian, corresponding to certain probabilities of transmission/reflection/absorption/creation for the corresponding superdiffusive Levy process.
This is from a series of works in collaboration with Tomazs Komorowski, Lenya Ryzhik, Herbert Spohn.

Mon, 15 Feb 2021

16:00 - 17:00
Virtual

The anatomy of integers

Ofir Gorodetsky
Abstract

We will survey an analogy between random integers and random permutations, which goes back to works of Erdős and Kac and of Billingsley.
This analogy inspired results and proofs about permutations, originating in the setting of integers, and vice versa.
Extensions of this analogy will be described, involving the generalized Ewens measure on permutations, based on joint work with D. Elboim.
If time permits, an analogous analogy, this time between random polynomials over a finite field and random permutations, will be discussed and formalized, with some applications.
 

Mon, 15 Feb 2021

15:45 - 16:45
Virtual

The singularity category of C^*(BG)

John Greenlees
(Warwick University)
Abstract

For an ordinary commutative Noetherian ring R we would define the singularity category to be the quotient of the (derived category of) finitely generated modules modulo the (derived category of) fg projective modules [``the bounded derived category modulo compact objects’’]. For a ring spectrum like C^*(BG) (coefficients in a field of characteristic p) it is easy to define the module category and the compact objects, but finitely generated objects need a new definition. The talk will describe the definition and show that the singularity category is trivial exactly when G is p-nilpotent. We will go on to describe the singularity category for groups with cyclic Sylow p-subgroup.

Mon, 15 Feb 2021
14:15
Virtual

Weightings and normal forms

Eckhard Meinrenken
(University of Toronto)
Abstract

The idea of assigning weights to local coordinate functions is used in many areas of mathematics, such as singularity theory, microlocal analysis, sub-Riemannian geometry, or the theory of hypo-elliptic operators, under various terminologies. In this talk, I will describe some differential-geometric aspects of weightings along submanifolds. This includes a coordinate-free definition, and the construction of weighted normal bundles and weighted blow-ups. As an application, I will describe a canonical local model for isotropic embeddings in symplectic manifolds. (Based on joint work with Yiannis Loizides.)

Mon, 15 Feb 2021
12:45
Virtual

TBA

Simeon Hellerman
(Kavli IPMU)
Fri, 12 Feb 2021
16:00
Virtual

Chern-Weil Global Symmetries and How Quantum Gravity Avoids Them

Irene Valenzuela
(Harvard University)
Abstract

I will discuss a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths and their conservation follows from Bianchi identities, so they are not easy to break. However, exact global symmetries should not be allowed in a consistent theory of quantum gravity. I will explain how these symmetries are typically gauged or broken in string theory. Interestingly, many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity.

Fri, 12 Feb 2021

16:00 - 17:00
Virtual

How to give a good talk (with an emphasis on online talks)

Ben Fehrman and Markus Upmeier
Abstract

In this session, Ben Fehrman and Markus Upmeier will give their thoughts on how to deliver a good talk for a conference or a seminar and tips for what to do and what to avoid. There will be a particular emphasis on how to give a good talk online. 

Fri, 12 Feb 2021

15:00 - 16:00
Virtual

Applications of Topology and Geometry to Crystal Structure Prediction

Phil Smith
(University of Liverpool)
Abstract

Crystal Structure Prediction aims to reveal the properties that stable crystalline arrangements of a molecule have without stepping foot in a laboratory, consequently speeding up the discovery of new functional materials. Since it involves producing large datasets that themselves have little structure, an appropriate classification of crystals could add structure to these datasets and further streamline the process. We focus on geometric invariants, in particular introducing the density fingerprint of a crystal. After exploring its computations via Brillouin zones, we go on to show how it is invariant under isometries, stable under perturbations and complete at least for an open and dense space of crystal structures.

 

Fri, 12 Feb 2021

14:00 - 15:00
Virtual

Schur-Weyl dualities and diagram algebras

Jonas Antor
(University of Oxford)
Abstract

The well-known Schur-Weyl duality provides a link between the representation theories of the general linear group $GL_n$ and the symmetric group $S_r$ by studying tensor space $(\mathbb{C}^n)^{\otimes r}$ as a ${(GL_n,S_r)}$-bimodule. We will discuss a few variations of this idea which replace $GL_n$ with some other interesting algebraic object (e.g. O$_n$ or $S_n$) and $S_r$ with a so-called diagram algebra. If time permits, we will also briefly look at how this can be used to define Deligne's category which 'interpolates' Rep($S_t$) for any complex number $t \in \mathbb{C}$.

Fri, 12 Feb 2021

14:00 - 15:00
Virtual

Geroprotectors, multimorbidity and frailty: why we need AI approaches in the quest to extend healthspan

Professor Ilaria Bellantuono
(Department of Oncology and Metabolism The Medical School Sheffield)
Abstract

Human life expectancy has been increasing steadily over the last century but this has resulted in an increasing incidence of age-related chronic diseases. Over 60% of people over the age of 65 will suffer from more than one disease at the same time (multimorbidity) and 25-50% of those over 80 years old develop frailty, defined as an accumulation of deficits and loss of reserve. Multimorbidity and frailty have complex medical needs and are strongly associated with disability and hospitalization. However, current treatments are suboptimal with problems of polypharmacy due to the fact that each disease is treated individually. Geroprotectors target fundamental mechanisms of ageing common to multiple age-related diseases and shows promise in delaying the onset of multimorbidity and frailty in animal models. However, their clinical testing in patients has been challenging due to the high level of complexity in the mode of action of geroprotectors and in the way multimorbidity and frailty develop.

 The talk will give an overview of these problems and make the case for the use of AI approaches to solve some of those complex issues with a view of designing appropriate clinical trials with geroprotectors to prevent age-related multimorbidity and frailty and extend healthspan.

Fri, 12 Feb 2021

14:00 - 15:00
Virtual

Fluid-induced fracturing of ice sheets and ice shelves

Yao Lai
(Princeton University)
Abstract

The interplay between fluid flows and fractures is ubiquitous in Nature and technology, from hydraulic fracturing in the shale formation to supraglacial lake drainage in Greenland and hydrofracture on Antarctic ice shelves.

In this talk I will discuss the above three examples, focusing on the scaling laws and their agreement with lab experiments and field observations. As climate warms, the meltwater on Antarctic ice shelves could threaten their structural integrity through propagation of water-driven fractures. We used a combination of machine learning and fracture mechanics to understand the stability of fractures on ice shelves. Our result also indicates that as meltwater inundates the surface of ice shelves in a warm climate, their collapse driven by hydrofracture could significantly influence the flow of the Antarctic Ice Sheets. 

Thu, 11 Feb 2021

16:00 - 17:00

Bayesian Inference for Economic Agent-Based Models using Tools from Machine Learning

DONOVAN PLATT
(Oxford University)
Abstract

Recent advances in computing power and the potential to make more realistic assumptions due to increased flexibility have led to the increased prevalence of simulation models in economics. While models of this class, and particularly agent-based models, are able to replicate a number of empirically-observed stylised facts not easily recovered by more traditional alternatives, such models remain notoriously difficult to estimate due to their lack of tractable likelihood functions. While the estimation literature continues to grow, existing attempts have approached the problem primarily from a frequentist perspective, with the Bayesian estimation literature remaining comparatively less developed. For this reason, we introduce a widely-applicable Bayesian estimation protocol that makes use of deep neural networks to construct an approximation to the likelihood, which we then benchmark against a prominent alternative from the existing literature.
 

Thu, 11 Feb 2021

14:00 - 15:00
Virtual

Mirror Symmetry (Part II)

Pyry Kuusela
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers for access to meeting (Carmen Jorge-Diaz, Connor Behan or Sujay Nair)

Thu, 11 Feb 2021

14:00 - 15:00
Virtual

From design to numerical analysis of partial differential equations: a unified mathematical framework

Annalisa Buffa
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Computer-based simulation of partial differential equations (PDEs) involves approximating the unknowns and relies on suitable description of geometrical entities such as the computational domain and its properties. The Finite Element Method (FEM) is by large the most popular technique for the computer-based simulation of PDEs and hinges on the assumption that discretized domain and unknown fields are both represented by piecewise polynomials, on tetrahedral or hexahedral partitions. In reality, the simulation of PDEs is a brick within a workflow where, at the beginning, the geometrical entities are created, described and manipulated with a geometry processor, often through Computer-Aided Design systems (CAD), and then used for the simulation of the mechanical behaviour of the designed object. This workflow is often repeated many times as part of a shape optimisation loop. Within this loop, the use of FEM on CAD geometries (which are mainly represented through their boundaries) calls then for (re-) meshing and re-interpolation techniques that often require human intervention and result in inaccurate solutions and lack of robustness of the whole process. In my talk, I will present the mathematical counterpart of this problem, I will discuss the mismatch in the mathematical representations of geometries and PDEs unknowns and introduce a promising framework where geometric objects and PDEs unknowns are represented in a compatible way. Within this framework, the challenges to be addressed in order to construct robust PDE solvers are many and I will discuss some of them. Mathematical results will besupported by numerical validation.

Thu, 11 Feb 2021

12:00 - 13:00
Virtual

Peristalsis, beading and hexagons: three short stories about elastic instabilities in soft solids

John Biggins
(Cambridge)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

This talk will be three short stories on the general theme of elastic
instabilities in soft solids. First I will discuss the inflation of a
cylindrical cavity through a bulk soft solid, and show that such a
channel ultimately becomes unstable to a finite wavelength peristaltic
undulation. Secondly, I will introduce the elastic Rayleigh Plateau
instability, and explain that it is simply 1-D phase separation, much
like the inflationary instability of a cylindrical party balloon. I will
then construct a universal near-critical analytic solution for such 1-D
elastic instabilities, that is strongly reminiscent of the
Ginzberg-Landau theory of magnetism. Thirdly, and finally, I will
discuss pattern formation in layer-substrate buckling under equi-biaxial
compression, and argue, on symmetry grounds, that such buckling will
inevitably produce patterns of hexagonal dents near threshold.

Wed, 10 Feb 2021

16:00 - 17:00

Totally geodesic submanifolds of symmetric spaces

Ivan Solonenko
Abstract

Totally geodesic submanifolds are perhaps one of the easiest types of submanifolds of Riemannian manifolds one can study, since a maximal totally geodesic submanifold is completely determined by any one of its points and the tangent space at that point. It comes as a bit of a surprise then that classification of such submanifolds — up to an ambient isometry — is a nightmarish and widely open question, even on such a manageable and well-understood class of Riemannian manifolds as symmetric spaces.

We will discuss the theory of totally geodesic submanifolds of symmetric spaces and see that any maximal such submanifold is homogeneous and thus can be completely encoded by some Lie algebraic data called a 'Lie triple'. We will then talk about the duality between symmetric spaces of compact and noncompact type and discover that there is a one-to-one correspondence between totally geodesic submanifolds of a symmetric space and its dual. Finally, we will touch on the known classification in rank one symmetric spaces, namely in spheres and projective/hyperbolic spaces over real normed division algebras. Time permitting, I will demonstrate how all this business comes in handy in other geometric problems on symmetric spaces, e. g. in classification of isometric cohomogeneity one actions.

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGRiMTM1ZjQtZWNi…

Wed, 10 Feb 2021

10:30 - 12:30
Virtual

Introduction on Nonlinear Wave Equations (Lecture 2 of 4)

Professor Qian Wang
(Oxford University)
Abstract

The course covers the standard material on nonlinear wave equations, including local existence, breakdown criterion, global existence for small data for semi-linear equations, and Strichartz estimate if time allows.

Wed, 10 Feb 2021
10:00
Virtual

Uniformly proper actions and finite-order elements

Vladimir Vankov
(University of Southampton)
Abstract

We will discuss a generalisation of hyperbolic groups, from the group actions point of view. By studying torsion, we will see how this can help to answer questions about ordinary hyperbolic groups.

Tue, 09 Feb 2021
15:30
Virtual

Product structure theory and its applications

Vida Dujmović
(Ottawa)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will introduce product structure theory of graphs and show how families of graphs that have such a structure admit short adjacency labeling scheme and small induced universal graphs. Time permitting, I will talk about another recent application of product structure theory, namely vertex ranking (coloring).

Tue, 09 Feb 2021

15:30 - 16:30
Virtual

Random quantum circuits and many-body dynamics

Adam Nahum
(University of Oxford)
Abstract

A quantum circuit defines a discrete-time evolution for a set of quantum spins/qubits, via a sequence of unitary 'gates’ coupling nearby spins. I will describe how random quantum circuits, where each gate is a random unitary matrix, serve as minimal models for various universal features of many-body dynamics. These include the dynamical generation of entanglement between distant spatial regions, and the quantum "butterfly effect". I will give a very schematic overview of mappings that relate averages in random circuits to the classical statistical mechanics of random paths. Time permitting, I will describe a new phase transition in the dynamics of a many-body wavefunction, due to repeated measurements by an external observer.

Tue, 09 Feb 2021
14:30
Virtual

A unified iteration scheme for strongly monotone problems

Pascal Heid
(Mathematical Institute)
Abstract

A wide variety of fixed-point iterative methods for the solution of nonlinear operator equations in Hilbert spaces exists. In many cases, such schemes can be interpreted as iterative local linearisation methods, which can be obtained by applying a suitable preconditioning operator to the original (nonlinear) equation. Based on this observation, we will derive a unified abstract framework which recovers some prominent iterative methods. It will be shown that for strongly monotone operators this unified iteration scheme satisfies an energy contraction property. Consequently, the generated sequence converges to a solution of the original problem.

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 09 Feb 2021
14:00
Virtual

The scaling limit of a critical random directed graph

Robin Stephenson
(Sheffield)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We consider the random directed graph $D(n,p)$ with vertex set $\{1,2,…,n\}$ in which each of the $n(n-1)$ possible directed edges is present independently with probability $p$. We are interested in the strongly connected components of this directed graph. A phase transition for the emergence of a giant strongly connected component is known to occur at $p = 1/n$, with critical window $p = 1/n + \lambda n-4/3$ for $\lambda \in \mathbb{R}$. We show that, within this critical window, the strongly connected components of $D(n,p)$, ranked in decreasing order of size and rescaled by $n-1/3$, converge in distribution to a sequence $(C_1,C_2,\ldots)$ of finite strongly connected directed multigraphs with edge lengths which are either 3-regular or loops. The convergence occurs in the sense of an $L^1$ sequence metric for which two directed multigraphs are close if there are compatible isomorphisms between their vertex and edge sets which roughly preserve the edge lengths. Our proofs rely on a depth-first exploration of the graph which enables us to relate the strongly connected components to a particular spanning forest of the undirected Erdős-Rényi random graph $G(n,p)$, whose scaling limit is well understood. We show that the limiting sequence $(C_1,C_2,\ldots)$ contains only finitely many components which are not loops. If we ignore the edge lengths, any fixed finite sequence of 3-regular strongly connected directed multigraphs occurs with positive probability.