Thu, 02 Nov 2017
16:00
C5

C^infinity Algebraic Geometry (with corners)

Kelli Francis-Staite
(Oxford University)
Abstract

Manifolds, the main objects of study in Differential Geometry, do not have nice categorical properties. For example, the category of manifolds with smooth maps does not contain all fibre products.
The algebraic counterparts to this (varieties and schemes) do have nice categorical properties. 

A method to ‘fix’ these categorical issues is to consider C^infinity schemes, which generalise the category of manifolds using algebraic geometry techniques. I will explain these concepts, and how to translate to manifolds with corners, which is joint work with my supervisor Professor Dominic Joyce.

Tue, 14 Nov 2017

14:15 - 15:15
L4

Representations of pseudo-reductive groups

Dr David Stewart
(School of Mathematics & Statistics Newcastle University)
Abstract

Pseudo-reductive groups are smooth connected linear algebraic groups over a field k whose k-defined unipotent radical is trivial. If k is perfect then all pseudo-reductive groups are reductive, but if k is imperfect (hence of characteristic p) then one gets a strictly larger collection of groups. They come up in a number of natural situations, not least when one wishes to say something about the simple representations of all smooth connected linear algebraic groups. Recent work by Conrad-Gabber-Prasad has made it possible to reduce the classification of the simple representations of pseudo-reductive groups to the split reductive case. I’ll explain how. This is joint work with Mike Bate.

QBIOX – Quantitative Biology in Oxford – is a new network that brings together biomedical and physical scientists from across the University who share a commitment to making biology and medicine quantitative. A wide range of bioscience research fields are interested in the behaviour of populations of cells: how they work individually and collectively, how they interact with their environment, how they repair themselves and what happens when these mechanisms go wrong.

Thu, 26 Oct 2017
16:00
C5

Quiver varieties revisited

Filip Zivanovic
(Oxford University)
Abstract

Quiver varieties are an attractive research topic of many branches of contemporary mathematics - (geometric) representation theory, (hyper)Kähler differential geometry, (symplectic) algebraic geometry and quantum algebra.

In the talk, I will define different types of quiver varieties, along with some interesting examples. Afterwards, I will focus on Nakajima quiver varieties (hyperkähler moduli spaces obtained from framed-double-quiver representations), stating main results on their topology and geometry. If the time permits, I will say a bit about the symplectic topology of them.

Thu, 19 Oct 2017
16:00
C5

The Drinfeld Centre of a Symmetric Fusion Category

Thomas Wasserman
(Oxford University)
Abstract


This talk will be a gentle introduction to braided fusion categories, with the eventual aim to explain a result from my thesis about symmetric fusion categories. 


Fusion categories are certain kinds of monoidal categories. They can be viewed as a categorification of the finite dimensional algebras, and appear in low-dimensional topological quantum field theories, as well as being studied in their own right. A braided fusion category is additionally commutative up to a natural isomorphism, symmetry is an additional condition on this natural isomorphism. Computations in these categories can be done pictorially, using so-called string diagrams (also known as ``those cool pictures''). 


In this talk I will introduce fusion categories using these string diagrams. I will then discuss the Drinfeld centre construction that takes a fusion category and returns a braided fusion category. We then show, if the input is a symmetric fusion category, that this Drinfeld centre carries an additional tensor product. All of this also serves as a good excuse to draw lots of pictures.
 

Fri, 17 Nov 2017

14:15 - 15:15
C3

Toward attaining turbulent dynamos in the laboratory

Vassillios Dallas
(University of Oxford)
Abstract

The existence of planetary and stellar magnetic fields is attributed to the dynamo instability, the mechanism by which a background turbulent flow spontaneously generates a magnetic field by the constructive refolding of magnetic field lines. Many efforts have been made by several experimental groups to reproduce the dynamo instability in the laboratory using liquid metals. However, so far, unconstrained dynamos driven by turbulent flows have not been achieved in the intrinsically low magnetic Prandtl number $P_m$ (i.e. $Pm = Rm/Re << 1$) laboratory experiments. In this seminar I will demonstrate that the critical magnetic Reynolds number $Rm_c$ for turbulent non-helical dynamos in the low $P_m$ limit can be significantly reduced if the flow is submitted to global rotation. Even for moderate rotation rates the required energy injection rate can be reduced by a factor more than 1000. Our finding thus points into a new paradigm for the design of new liquid metal dynamo experiments.

Fri, 01 Dec 2017

14:15 - 15:15
C3

Linking past climate change and volcanism using geochemistry: a simple quantitative approach

Lawrence Percival
(University of Lausanne)
Abstract

The last 500 million years of Earth’s history have been punctuated by numerous episodes of abrupt climate change, some of them coincident with mass extinction events. Many of these climate events have been associated with massive volcanism, occurring during the emplacement of so-called Large Igneous Provinces (LIPs). Because of the significant impact of small modern eruptions on the Earth’s climate, a link between LIP volcanism and past climate change has been strongly advocated. Geochemical investigations of the sedimentary records which record major climate changes can give a profound insight into the proposed interactions between volcanic activity and climate. Mercury is a trace-gas emitted by modern volcanoes, which are the main source of this metal to the atmosphere. Ultimately atmospheric mercury is deposited in sediments, thus if enrichments in mercury are observed in sediments of the same age across the globe, a volcanic cause of these enrichments might be inferred. Osmium isotopes can also be used as a fingerprint of volcanic activity, as primitive basalts are enriched in unradiogenic 188Os. However, the continental crust is enriched in radiogenic 187Os. Therefore, the 187Os/188Os ratio can change with either more volcanic activity, or increased continental weathering during climate change. Changes in sedimentary mercury content and osmium isotopes can thus be used as markers of volcanism or weathering during climate events. However, a possible future step would be to quantify the amount of volcanism and/or weathering on the basis of these sedimentary excursions. The final part of this talk will introduce some simple quantitative models which may represent a first step towards such quantification, with the aim of further elaborating these models in the future.

Fri, 03 Nov 2017

14:15 - 15:15
C3

Compatible finite element methods for numerical weather prediction

Colin Cotter
(Imperial College London)
Abstract

I will describe our research on numerical methods for atmospheric dynamical cores based on compatible finite element methods. These methods extend the properties of the Arakawa C-grid to finite element methods by using compatible finite element spaces that respect the elementary identities of vector-calculus. These identities are crucial in demonstrating basic stability properties that are necessary to prevent the spurious numerical degradation of geophysical balances that would otherwise make numerical discretisations unusable for weather and climate prediction without the introduction of undesirable numerical dissipation. The extension to finite element methods allow these properties to be enjoyed on non-orthogonal grids, unstructured multiresolution grids, and with higher-order discretisations. In addition to these linear properties, for the shallow water equations, the compatible finite element structure can also be used to build numerical discretisations that respect conservation of energy, potential vorticity and enstrophy; I will survey these properties. We are currently developing a discretisation of the 3D compressible Euler equations based on this framework in the UK Dynamical Core project (nicknamed "Gung Ho"). The challenge is to design discretisation of the nonlinear operators that remain stable and accurate within the compatible finite element framework. I will survey our progress on this work to date and present some numerical results.

Fri, 20 Oct 2017
14:15
C3

Modelling wave–ice floe interactions and the overwash phenomenon

Luke Bennetts
(University of Adelaide)
Abstract

Following several decades of development by applied mathematicians, models of ocean wave interactions with sea ice floes are now in high demand due to the rapid recent changes in the world’s sea ice cover. From a mathematical perspective, the models are of interest due to the thinness of the floes, leading to elastic responses of the floes to waves, and the vast number of floes that waves encounter. Existing models are typically based on linear theories, but the thinness of the floes leads to the unique and highly nonlinear phenomenon of overwash, where waves run over the floes, in doing so dissipating wave energy and impacting the floes thermodynamically. I will give an overview of methods developed for the wave-floe problem, and present a new, bespoke overwash model, along with supporting laboratory experiments and numerical CFD simulations.

Subscribe to