Forthcoming events in this series


Tue, 11 May 2021
14:15
Virtual

C*-blocks and crossed products for real and p-adic reductive groups

Anne-Marie Aubert
(Sorbonne Université - Université de Paris)
Abstract

Let G be a real or a p-adic connected reductive group. We will recall the description of the connected components of the tempered dual of G in terms of certain subalgebras of its reduced C*-algebra.

Each connected component comes with a torus equipped with a finite group action. We will see that, under a certain geometric assumption on the structure of stabilizers for that action (that is always satisfied for real groups), the component has a simple geometric structure which encodes the reducibility of the associate parabolically induced representations.

We will provide a characterization of the connected components for which the geometric assumption is satisfied, in the case when G is a symplectic group.

This is a joint work with Alexandre Afgoustidis.

Tue, 27 Apr 2021

14:15 - 15:15
Virtual

An upper bound for the nonsolvable length of a finite group in terms of its shortest law

Orazio Puglisi
(Università degli Studi di Firenze)
Abstract

Every finite group $G$ has a normal series each of whose factors is either a solvable group or a direct product of non-abelian simple groups. The minimum number of nonsolvable factors, attained on all possible such series in G, is called the nonsolvable length $\lambda(G)$ of $G$. In recent years several authors have investigated this invariant and its relation to other relevant parameters. E.g. it has been conjectured by Khukhro and Shumyatsky (as a particular case of a more general conjecture about non-$p$-solvable length) and Larsen that, if $\nu(G)$ is the length of the shortest law holding in the finite group G, the nonsolvable length of G can be bounded above by some function of $\nu(G)$. In a joint work with Francesco Fumagalli and Felix Leinen we have confirmed this conjecture proving that the inequality $\lambda(G) < \nu(G)$ holds in every finite group $G$. This result is obtained as a consequence of a result about permutation representations of finite groups of fixed nonsolvable length. In this talk I will outline the main ideas behind the proof of our result.

Tue, 09 Mar 2021
14:15
Virtual

Coadmissible modules, bornologies, and derived categories II

Andreas Bode
(ENS Lyon)
Abstract

Coadmissible modules over Frechet-Stein algebras arise naturally in p-adic representation theory, e.g. in the study of locally analytic representations of p-adic Lie groups or the function spaces of rigid analytic Stein spaces. We show that in many cases, the category of coadmissible modules admits an exact and fully faithful embedding into the category of complete bornological modules, also preserving tensor products. This allows us to introduce derived methods to the study of coadmissible modules without forsaking the analytic flavour of the theory. As an application, we introduce six functors for Ardakov-Wadsley's D-cap-modules and discuss some instances where coadmissibility (in a derived sense) is preserved.

Tue, 02 Mar 2021
14:15
Virtual

Graded Clifford-Drinfeld algebras

Kieran Calvert
(Manchester University)
Abstract

We combine the notions of graded Clifford algebras and Drinfeld algebras. This gives us a framework to study algebras with a PBW property and underlying vector space $\mathbb{C}[G] \# Cl(V) \otimes S(U) $ for $G$-modules $U$ and $V$. The class of graded Clifford-Drinfeld algebras contains the Hecke-Clifford algebras defined by Nazarov, Khongsap-Wang. We give a new example of a GCD algebra which plays a role in an Arakawa-Suzuki duality involving the Clifford algebra.

Tue, 23 Feb 2021

14:15 - 15:15
Virtual

From braids to transverse slices in reductive groups

Dr Wicher Malten
(University of Oxford)
Abstract

We explain how group analogues of Slodowy slices arise by interpreting certain Weyl group elements as braids. Such slices originate from classical work by Steinberg on regular conjugacy classes, and different generalisations recently appeared in work by Sevostyanov on quantum group analogues of W-algebras and in work by He-Lusztig on Deligne-Lusztig varieties.

Our perspective furnishes a common generalisation, essentially solving the problem. We also give a geometric criterion for Weyl group elements to yield strictly transverse slices.

Tue, 26 Jan 2021

14:15 - 15:15
Virtual

Representation theory of wreath products

Reuben Green
(Pembroke College)
Abstract

The wreath product of a finite group, or more generally an algebra, with a symmetric group is a familiar and important construction in representation theory and other areas of Mathematics. I shall present some highlights from my work on the representation theory of wreath products. These will include both structural properties (for example, that the wreath product of a cellular algebra with a symmetric group is again a cellular algebra) and cohomological ones (one 
particular point of interest being a generalisation of the result of Hemmer and Nakano on filtration multiplicities to the wreath product of two symmetric groups). I will also give an outline of some potential applications of this and related theory to important open  problems in algebraic combinatorics.

Tue, 01 Dec 2020

14:15 - 15:15
Virtual

The deformed Dixmier-Moeglin equivalence for completed enveloping algebras

Adam Jones
(Manchester University)
Abstract

An algebra $R$ is said to satisfy the Dixmier-Moeglin equivalence if a prime ideal $P$ of $R$ is primitive if and only if it is rational, if and only if it is locally closed, and a commonly studied problem in non-commutative algebra is to classify rings satisfying this equivalence, e.g. $U(\mathfrak g)$ for a finite dimensional Lie algebra $\mathfrak g$. We explore methods of generalising this to a $p$-adic setting, where we need to weaken the statement. Specifically, if $\hat R$ is the $p$-adic completion of a $\mathbb Q_p$-algebra $R$, rather than approaching the Dixmier-Moeglin equivalence for $\hat R$ directly, we instead compare the classes of primitive, rational and locally closed prime ideals of $\hat R$ within suitable "deformations". The case we focus on is where $R=U(L)$ for a $\mathbb Z_p$-Lie algebra $L$, and the deformations have the form $\hat U(p^n L)$, and we aim to prove a version of the equivalence in the instance where $L$ is nilpotent.

Tue, 24 Nov 2020

14:15 - 15:15
Virtual

Minkowski's theorem, and a question of Serre

Michael Collins
(Oxford University)
Abstract

Let $p$ be a prime. Minkowski (1887) gave a bound for the order of a finite $p$-subgroup of the linear group $\mathsf{GL}(n,\mathbf Z)$ as a function of $n$, and this necessarily holds for $p$-subgroups of $\mathsf{GL}(n,\mathbf Q)$ also. A few years ago, Serre asked me whether some analogous result might be obtained for subgroups of $\mathsf{GL}(n,\mathbf C)$ using the methods I employed to obtain optimal bounds for Jordan's theorem.

Bounds can be so obtained and I will explain how but, while Minkowski's bound is achieved, no linear bound (as Serre initially suggested) can be achieved. I will discuss progress on this problem and the issues that arise in seeking an ideal form for the solution.

Tue, 17 Nov 2020

14:15 - 15:15
Virtual

The Poisson spectrum of the symmetric algebra of the Virasoro algebra

Susan Sierra
(Edinburgh University)
Abstract

Let W be the Witt algebra of vector fields on the punctured complex plane, and let Vir be the Virasoro algebra, the unique nontrivial central extension of W.  We discuss work in progress with Alexey Petukhov to analyse Poisson ideals of the symmetric algebra of Vir.

We focus on understanding maximal Poisson ideals, which can be given as the Poisson cores of maximal ideals of Sym(Vir) and of Sym(W).  We give a complete classification of maximal ideals of Sym(W) which have nontrivial Poisson cores.  We then lift this classification to Sym(Vir), and use it to show that if $\lambda \neq 0$, then $(z-\lambda)$ is a maximal Poisson ideal of Sym(Vir).

Tue, 10 Nov 2020

14:15 - 15:15
Virtual

What is a unipotent representation?

Lucas Mason-Brown
(Oxford University)
Abstract

Let $G$ be a connected reductive algebraic group, and let $G(\mathbb{F}_q)$ be its group of $\mathbb{F}_q$-rational points. Denote by $\mathrm{Irr}(G(\mathbb{F}_q))$ the set of (equivalence classes) of irreducible finite-dimensional representations. Deligne and Lusztig defined a finite subset $$\mathrm{Unip}(G(\mathbb{F}_q)) \subset \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$$ 
of unipotent representations. These representations play a distinguished role in the representation theory of $G(\mathbb{F}_q)$. In particular, the classification of $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ reduces to the classification of $\mathrm{Unip}(G(\mathbb{F}_q))$. 

Now replace $\mathbb{F}_q$ with a local field $k$ and replace $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ with $\mathrm{Irr}_{\mathrm{u}}(G(k))$ (irreducible unitary representations). Vogan has predicted the existence of a finite subset 
$$\mathrm{Unip}(G(k)) \subset \mathrm{Irr}_{\mathrm{u}}(G(k))$$ 
which completes the following analogy
$$\mathrm{Unip}(G(k)) \text{ is to } \mathrm{Irr}_{\mathrm{u}}(G(k)) \text{ as } \mathrm{Unip}(G(\mathbb{F}_q)) \text{ is to } \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q)).$$
In this talk I will propose a definition of $\mathrm{Unip}(G(k))$ when $k = \mathbb{C}$. The definition is geometric and case-free. The representations considered include all of Arthur's, but also many others. After sketching the definition and cataloging its properties, I will explain a classification of $\mathrm{Unip}(G(\mathbb{C}))$, generalizing the well-known result of Barbasch-Vogan for Arthur's representations. Time permitting, I will discuss some speculations about the case of $k=\mathbb{R}$.

This talk is based on forthcoming joint work with Ivan Loseu and Dmitryo Matvieievskyi.

Tue, 03 Nov 2020

14:15 - 15:15
Virtual

Diving into the Shallow End

Stella Gastineau
(Boston College)
Abstract

In 2013, Reeder–Yu gave a construction of supercuspidal representations by starting with stable characters coming from the shallowest depth of the Moy–Prasad filtration. In this talk, we will be diving deeper—but not too deep. In doing so, we will construct examples of supercuspidal representations coming from a larger class of “shallow” characters. Using methods similar to Reeder–Yu, we can begin to make predictions about the Langlands parameters for these representations.

Tue, 27 Oct 2020

14:15 - 15:15
Virtual

Parameterising unramified nilpotent orbits using dual Springer parameters

Emile Okada
(Oxford University)
Abstract

The nilpotent orbits of a Lie algebra play a central role in modern representation theory notably cropping up in the Springer correspondence and the fundamental lemma. Their behaviour when the base field is algebraically closed is well understood, however the p-adic case which arises in the study of admissible representations of p-adic groups is considerably more subtle. Their classification was only settled in the late 90s when Barbasch and Moy ('97) and Debacker (’02) developed an ‘affine Bala-Carter’ theory using the Bruhat-Tits building. In this talk we combine this work with work by Sommers and McNinch to provide a parameterisation of nilpotent orbits over a maximal unramified extension of a p-adic field in terms of so called dual Springer parameters and outline an application of this result to wavefront sets.

Tue, 20 Oct 2020

14:15 - 15:15
Virtual

Subspace arrangements and the representation theory of rational Cherednik algebras

Stephen Griffeth
(Universidad de Talca)
Abstract

I will explain how the representation theory of rational Cherednik algebras interacts with the commutative algebra of certain subspace arrangements arising from the reflection arrangement of a complex reflection group. Potentially, the representation theory allows one to study both qualitative questions (e.g., is the arrangement Cohen-Macaulay or not?) and quantitative questions (e.g., what is the Hilbert series of the ideal of the arrangement, or even, what are its graded Betti numbers?), by applying the tools (such as orthogonal polynomials, Kazhdan-Lusztig characters, and Dirac cohomology) that representation theory provides. This talk is partly based on joint work with Susanna Fishel and Elizabeth Manosalva.

Tue, 13 Oct 2020

14:15 - 15:15
Virtual

The Dirac inequality, Weyl groups, and isolated unitary representations

Dan Ciubotaru
(Oxford University)
Abstract

In the classical setting of real semisimple Lie groups, the Dirac inequality (due to Parthasarathy) gives a necessary condition that the infinitesimal character of an irreducible unitary representation needs to satisfy in terms of the restriction of the representation to the maximal compact subgroup. A similar tool was introduced in the setting of representations of p-adic groups in joint work with Barbasch and Trapa, where the necessary unitarity condition is phrased in terms of the semisimple parameter in the Kazhdan-Lusztig parameterization and the hyperspecial parahoric restriction. I will present several consequences of this inequality to the problem of understanding the unitary dual of the p-adic group, in particular, how it can be used in order to exhibit several isolated "extremal" unitary representations and to compute precise "spectral gaps" for them.

Tue, 09 Jun 2020
14:15
L4

TBA

Alexander Kleshchev
(University of Oregon)
Tue, 17 Mar 2020
14:15
L4

TBA (cancelled)

Peter Schneider
(Universitat Munster)
Tue, 10 Mar 2020
14:15
L4

An uncountable Mittag-Leffler condition with applications to p-adic locally convex vector spaces

Andrea Pulita
(Universite Grenoble-Alpes)
Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.

Tue, 03 Mar 2020
14:15
L4

2-representation theory of Soergel bimodules

Vanessa Miemietz
(University of East Anglia)
Abstract

I will explain the basics of 2-representation theory and will explain an approach to classifying 'simple' 2-representations of the Hecke 2-category (aka Soergel bimodules) for finite Coxeter types.

Tue, 25 Feb 2020
14:15
L4

A gallery model for affine flag varieties

Yusra Naqvi
(University of Sidney)
Abstract

Positively folded galleries arise as images of retractions of buildings onto a fixed apartment and play a role in many areas of maths (such as in the study of affine Hecke algebras, Macdonald polynomials, MV-polytopes, and affine Deligne-Lusztig varieties). In this talk, we will define positively folded galleries, and then look at how these can be used to study affine flag varieties. We will also look at a new recursive description of the set of end alcoves of folded galleries with respect to alcove-induced orientations, which gives us a combinatorial description of certain double coset intersections in these affine flag varieties. This talk is based on joint work with Elizabeth Milićević, Petra Schwer and Anne Thomas.

Tue, 04 Feb 2020
14:15
L4

Tensor-triangular fields

Paul Balmer
(UCLA)
Abstract

I'll give a general introduction to tensor-triangular geometry, the algebraic study of tensor-triangulated categories as they appear in topology, geometry and representation theory. Then I'll discuss an elementary idea, that of a "field" in this theory, and explain what we currently know about them.

Tue, 28 Jan 2020

14:15 - 15:15
L4

Soficity and variations on Higman's group.

Prof. Tim Riley
(Cornell)
Further Information


A group is sofic when every finite subset can be well approximated in a finite symmetric group. The outstanding question, due to Gromov, is whether every group is sofic.
Helfgott and Juschenko argued that a celebrated group constructed by Higman is unlikely to be sofic because its soficity would imply the existence of some seemingly pathological functions.  I will describe joint work with Martin Kassabov and Vivian Kuperberg in which we construct variations on Higman's group and explore their soficity.  
 

Tue, 03 Dec 2019
14:15
L4

Deformation of a Howe duality

Marcelo De Martino
(Oxford University)
Abstract

In this talk, I will report about a joint work with D. Ciubotaru, in which we investigate the Dunkl version of the classical Howe-duality (O(k),spo(2|2)). Similar Fischer-type decompositions were studied before in the works of Ben-Said, Brackx, De Bie, De Schepper, Eelbode, Orsted, Soucek and Somberg for other Howe-dual pairs. Our work builds on the notion of a Dirac operator for Drinfeld algebras introduced by Ciubotaru, which was inspired by the analogous theory for Lie algebras, as well as the work of Cheng and Wang on classical Howe dualities.

Tue, 26 Nov 2019
14:15
L4

Heisenberg groups and graded Lie algebras

Beth Romano
(Oxford University)
Abstract

I will talk about a way of building graded Lie algebras from certain Heisenberg groups. The input for this construction arises naturally when studying families of algebraic curves, and we'll look at some examples in which Lie theory interacts with number theory in an illuminating way.