Forthcoming events in this series


Tue, 18 Oct 2016

14:15 - 15:15
L4

Tensor diagrams and Chebyshev polynomials

Lisa Lamberti
(Oxford)
Abstract

Given a complex vector space $V$, consider the ring $R_{a,b}(V)$ of polynomial functions on the space of configurations of $a$ vectors and $b$ covectors which are invariant under the natural action of $SL(V)$. Rings of this type play a central role in representation theory, and their study dates back to Hilbert. Over the last three decades, different bases of these spaces with remarkable properties were found. To explicitly construct, as well as to compare, some of these bases remains a challenging problem, already open when $V$ is 3-dimensional. 
In this talk, I report on recent developments in the 3-dimensional setting of this theory.

Tue, 11 Oct 2016
14:15
L4

Categorical matrix factorizations

Petter Bergh
(NTNU Trondheim)
Abstract

We define categorical matrix factorizations in a suspended additive category, 
with respect to a central element. Such a factorization is a sequence of maps 
which is two-periodic up to suspension, and whose composition equals the 
corresponding coordinate map of the central element. When the category in 
question is that of free modules over a commutative ring, together with the 
identity suspension, then these factorizations are just the classical matrix 
factorizations. We show that the homotopy category of categorical matrix 
factorizations is triangulated, and discuss some possible future directions. 
This is joint work with Dave Jorgensen.

Wed, 01 Jun 2016

15:00 - 16:00
L6

Homology torsion growth in right angled groups

Miklos Abert
(Renyi Institute Budapest)
Abstract

Torsion in homology are invariants that have received increasing attention over the last twenty years, by the work of Lück, Bergeron, Venkatesh and others. While there are various vanishing results, no one has found a finitely presented group where the torsion in the first homology is exponential over a normal chain with trivial intersection. On the other hand, conjecturally, every 3-manifold group should be an example.

A group is right angled if it can be generated by a list of infinite order elements, such that every element commutes with its neighbors. Many lattices in higher rank Lie groups (like SL(n,Z), n>2) are right angled. We prove that for a right angled group, the torsion in the first homology has subexponential growth for any Farber sequence of subgroups, in particular, any chain of normal subgroups with trivial intersection. We also exhibit right angled cocompact lattices in SL(n,R) (n>2), for which the Congruence Subgroup Property is not known. This is joint work with Nik Nikolov and Tsachik Gelander.

Tue, 24 May 2016

14:15 - 15:15
L4

Thurston and Alexander norms, and the Bieri-Neumann-Strebel invariants for free-by-cyclic groups

Dawid Kielak
(Bielefeld)
Abstract

We will introduce the Thurston norm in the setting of 3-manifold groups, and show how the techniques coming from L2-homology allow us to extend its definition to the setting of free-by-cyclic groups.
We will also look at the relationship between this Thurston norm and the Alexander norm, and the BNS invariants, in particular focusing on the case of ascending HNN extensions of the 2-generated free group.

Tue, 17 May 2016

14:15 - 15:15
L4

Bounds of Minkowski type for finite complex linear groups - the answer to a question of Serre

Michael Collins
(Oxford)
Abstract


In 1878, Jordan showed that there is a function f on the set of natural numbers such that, if $G$ is a finite subgroup of $GL(n,C)$, then $G$ has an abelian normal subgroup of index at most $f(n)$. Early bounds were given by Frobenius and Schur, and close to optimal bounds were given by Weisfeiler in unpublished work in 1984 using the classification of finite simple groups; about ten years ago I obtained the optimal bounds. Crucially, these are "absolute" bounds; they do not address the wider question of divisibility of orders.

In 1887, Minkowski established a bound for the order of a Sylow p-subgroup of a finite subgroup of GL(n,Z). Recently, Serre asked me whether I could obtain Minkowski-like results for complex linear groups, and posed a very specific question. The answer turns out to be no, but his suggestion is actually quite close to the truth, and I shall address this question in my seminar. The answer addresses the divisibility issue in general, and it turns out that a central technical theorem on the structure of linear groups from my earlier work which there was framed as a replacement theorem can be reinterpreted as an embedding theorem and so can be used to preserve divisibility.

Tue, 26 Apr 2016

14:15 - 15:30
L4

Multiserial and Special Multiserial Algebras

Sibylle Schroll
(Leicester)
Abstract

The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike  biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.

Tue, 08 Mar 2016

14:15 - 15:30
L4

Strongly dense subgroups of semisimple algebraic groups.

Emmanuel Breuillard
(Orsay and Munster)
Abstract

A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup  Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.

Tue, 01 Mar 2016

14:15 - 15:30
L4

There And Back Again: A Localization's Tale.

Sian Fryer
(Leeds)
Abstract

The prime spectrum of a quantum algebra has a finite stratification in terms
of a set of distinguished primes called H-primes, and we can study these
strata by passing to certain nice localizations of the algebra.  H-primes
are now starting to show up in some surprising new areas, including
combinatorics (totally nonnegative matrices) and physics, and we can borrow
techniques from these areas to answer questions about quantum algebras and
their localizations.    In particular, we can use Grassmann necklaces -- a
purely combinatorial construction -- to study the topological structure of
the prime spectrum of quantum matrices.

Tue, 23 Feb 2016

14:15 - 15:30
L4

Discrete triangulated categories

David Pauksztello
(Manchester)
Abstract
This is a report on joint work with Nathan Broomhead and David Ploog.
 
The notion of a discrete derived category was first introduced by Vossieck, who classified the algebras admitting such a derived category. Due to their tangible nature, discrete derived categories provide a natural laboratory in which to study concretely many aspects of homological algebra. Unfortunately, Vossieck’s definition hinges on the existence of a bounded t-structure, which some triangulated categories do not possess. Examples include triangulated categories generated by ‘negative spherical objects’, which occur in the context of higher cluster categories of type A infinity. In this talk, we compare and contrast different aspects of discrete triangulated categories with a view toward a good working definition of such a category.
 

 
Tue, 16 Feb 2016

14:15 - 15:15
L4

Formal degrees of unipotent discrete series representations of semisimple $p$-adic groups

Dan Ciubotaru
(Oxford)
Abstract

The formal degree is a fundamental invariant of a discrete series representation which generalizes the notion of dimension from finite dimensional representations. For discrete series with unipotent cuspidal support, a formula for formal degrees, conjectured by Hiraga-Ichino-Ikeda, was verified by Opdam (2015). For split exceptional groups, this formula was previously known from the work of Reeder (2000). I will present a different interpretation of the formal degrees of unipotent discrete series in terms of the nonabelian Fourier transform (introduced by Lusztig in the character theory of finite groups of Lie type) and certain invariants arising in the elliptic theory of the affine Weyl group. This interpretation relates to recent conjectures of Lusztig about `almost characters' of p-adic groups. The talk is based on joint work with Eric Opdam.

Tue, 26 Jan 2016

14:15 - 15:30
L4

Extensions of modules for graded Hecke algebras

Kei Yuen Chan
(Amsterdam)
Abstract

Graded affine Hecke algebras were introduced by Lusztig for studying the representation theory of p-adic groups. In particular, some problems about extensions of representations of p-adic groups can be transferred to problems in the graded Hecke algebra setting. The study of extensions gives insight to the structure of various reducible modules. In this talk, I shall discuss some methods of computing Ext-groups for graded Hecke algebras.
The talk is based on arXiv:1410.1495, arXiv:1510.05410 and forthcoming work.

Tue, 01 Dec 2015

14:15 - 15:15
L4

Uniform exponential growth for linear groups

Peter Varju
(Cambridge)
Abstract

Abstract: This is a joint work with E. Breuillard.

A conjecture of Breuillard asserts that for every positive integer d, there is a positive constant c such that the following holds. Let S be a finite subset of GL(d,C) that generates a group, which is not virtually nilpotent. Then |S^n|>exp(cn) for all n.
Considering an algebraic number a that is not a root of unity and the semigroup generated by the affine transformations x-> ax+1, x-> ax+1, the above conjecture implies that the Mahler measure of a is at least 1+c' for some c'>0 depending on c. This property is known as Lehmer's conjecture.

I will talk about the converse of this implication, namely that Lehmer's conjecture implies the uniform growth conjecture of
Breuillard.

Tue, 17 Nov 2015
14:15
L4

Representation theory related to some infinite permutation groups.

Peter Neumann
(Oxford)
Abstract

Our work (which is joint with Simon Smith) began as a study of the structure of infinite permutation groups $G$ in which point stabilisers are finite and all infinite normal subgroups are transitive. That led to two variations.
 

One is the generalisation in which point stabilisers are merely assumed to satisfy min-{\sc N}, the minimal condition on normal subgroups. The groups $G$ are then of two kinds. Either they have a maximal finite normal subgroup, modulo which they have either one or two minimal non-trivial normal subgroups, or they have a regular normal subgroup $M$ which is a divisible abelian $p$-group of finite rank. In the latter case the point stabilisers are finite and act irreducibly on the socle of~$M$. This leads to our second variation, which is a study of the finite linear groups that can arise.

Tue, 10 Nov 2015

14:15 - 15:15
L4

Some infinite permutation groups

Cheryl Praeger
(UWA)
Abstract

Our work (which is joint with Simon Smith) began as a study of the structure of infinite permutation groups $G$ in which point stabilisers are finite and all infinite normal subgroups are transitive. That led to two variations. One is the generalisation in which point stabilisers are merely assumed to satisfy min-{\sc N}, the minimal condition on normal subgroups. The groups $G$ are then of two kinds. Either they have a maximal finite normal subgroup, modulo which they have either one or two minimal non-trivial normal subgroups, or they have a regular normal subgroup $M$ which is a divisible abelian $p$-group of finite rank. In the latter case the point stabilisers are finite and act irreducibly on the socle of~$M$. This leads to our second variation, which is a study of the finite linear groups that can arise.

Tue, 03 Nov 2015

16:00 - 17:00
C5

Equivalence relations for quadratic forms

Detlev Hoffmann
(Dortmund)
Abstract

We investigate equivalence relations for quadratic forms that can be expressed in terms of algebro-geometric properties of their associated quadrics, more precisely, birational, stably birational and motivic equivalence, and isomorphism of quadrics. We provide some examples and counterexamples and highlight some important open problems.

Tue, 27 Oct 2015

14:15 - 15:30
L4

Symplectic resolutions of quiver varieties.

Gwyn Bellamy
(University of Glasgow)
Abstract

Quiver varieties, as introduced by Nakaijma, play a key role in representation theory. They give a very large class of symplectic singularities and, in many cases, their symplectic resolutions too. However, there seems to be no general criterion in the literature for when a quiver variety admits a symplectic resolution. In this talk I will give necessary and sufficient conditions for a quiver variety to admit a symplectic resolution.  This result is based on work of Crawley-Bouvey and of Kaledin, Lehn and Sorger. The talk is based on joint work with T. Schedler.
 

Tue, 13 Oct 2015

14:15 - 15:15
L4

CANCELLED!

Stefan Witzel
(Bielefeld)
Abstract

 If $R = F_q[t]$ is the polynomial ring over a finite field
then the group $SL_2(R)$ is not finitely generated. The group $SL_3(R)$ is
finitely generated but not finitely presented, while $SL_4(R)$ is
finitely presented. These examples are facets of a larger picture that
I will talk about.

Tue, 16 Jun 2015

17:00 - 18:00
C2

Growth of homology torsion in residually finite groups

Nikolay Nikolov
(Oxford)
Abstract

I will report on recent progress towards understanding the growth of the torsion of the homology of subgroups of finite index in a given residually finite group G.

The cases I will consider are when G is amenable (joint work with P, Kropholler and A. Kar) and when G is right angled (joint work with M. Abert and T. Gelander).

Tue, 09 Jun 2015

17:00 - 18:00
C2

TBA

Benjamin Klopsch
(Duesseldorf)
Tue, 19 May 2015

17:00 - 18:00
C2

Diagonalizable algebras of operators on infinite-dimensional vector spaces

Manuel Reyes
(Bowdoin)
Abstract

Given a vector space V over a field K, let End(V) denote the algebra of linear endomorphisms of V. If V is finite-dimensional, then it is well-known that the diagonalizable subalgebras of End(V) are characterized by their internal algebraic structure: they are the subalgebras isomorphic to K^n for some natural number n. 

In case V is infinite dimensional, the diagonalizable subalgebras of End(V) cannot be characterized purely by their internal algebraic structure: one can find diagonalizable and non-diagonalizable subalgebras that are isomorphic.  I will explain how to characterize the diagonalizable subalgebras of End(V) as topological algebras, using a natural topology inherited from End(V).  I will also illustrate how this characterization relates to an infinite-dimensional Wedderburn-Artin theorem that characterizes "topologically semisimple" algebras.

Tue, 12 May 2015

17:00 - 18:00
C2

Permutation groups, primitivity and derangements

Tim Burness
(Bristol)
Abstract

Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.

Thu, 16 Apr 2015

14:00 - 15:00
N3.12

D-modules and arithmetic: a theory of the b-function in positive characteristic.

Thomas Bitoun
(HSE Moscow)
Abstract

We exhibit a construction in noncommutative nonnoetherian algebra that should be understood as a positive characteristic analogue of the Bernstein-Sato polynomial or b-function. Recall that the b-function is a polynomial in one variable attached to an analytic function f. It is well-known to be related to the singularities of f and is useful in continuing a certain type of zeta functions, associated with f. We will briefly recall the complex theory and then emphasize the arithmetic aspects of our construction.