Forthcoming events in this series


Tue, 27 Oct 2020

14:15 - 15:15
Virtual

Parameterising unramified nilpotent orbits using dual Springer parameters

Emile Okada
(Oxford University)
Abstract

The nilpotent orbits of a Lie algebra play a central role in modern representation theory notably cropping up in the Springer correspondence and the fundamental lemma. Their behaviour when the base field is algebraically closed is well understood, however the p-adic case which arises in the study of admissible representations of p-adic groups is considerably more subtle. Their classification was only settled in the late 90s when Barbasch and Moy ('97) and Debacker (’02) developed an ‘affine Bala-Carter’ theory using the Bruhat-Tits building. In this talk we combine this work with work by Sommers and McNinch to provide a parameterisation of nilpotent orbits over a maximal unramified extension of a p-adic field in terms of so called dual Springer parameters and outline an application of this result to wavefront sets.

Tue, 20 Oct 2020

14:15 - 15:15
Virtual

Subspace arrangements and the representation theory of rational Cherednik algebras

Stephen Griffeth
(Universidad de Talca)
Abstract

I will explain how the representation theory of rational Cherednik algebras interacts with the commutative algebra of certain subspace arrangements arising from the reflection arrangement of a complex reflection group. Potentially, the representation theory allows one to study both qualitative questions (e.g., is the arrangement Cohen-Macaulay or not?) and quantitative questions (e.g., what is the Hilbert series of the ideal of the arrangement, or even, what are its graded Betti numbers?), by applying the tools (such as orthogonal polynomials, Kazhdan-Lusztig characters, and Dirac cohomology) that representation theory provides. This talk is partly based on joint work with Susanna Fishel and Elizabeth Manosalva.

Tue, 13 Oct 2020

14:15 - 15:15
Virtual

The Dirac inequality, Weyl groups, and isolated unitary representations

Dan Ciubotaru
(Oxford University)
Abstract

In the classical setting of real semisimple Lie groups, the Dirac inequality (due to Parthasarathy) gives a necessary condition that the infinitesimal character of an irreducible unitary representation needs to satisfy in terms of the restriction of the representation to the maximal compact subgroup. A similar tool was introduced in the setting of representations of p-adic groups in joint work with Barbasch and Trapa, where the necessary unitarity condition is phrased in terms of the semisimple parameter in the Kazhdan-Lusztig parameterization and the hyperspecial parahoric restriction. I will present several consequences of this inequality to the problem of understanding the unitary dual of the p-adic group, in particular, how it can be used in order to exhibit several isolated "extremal" unitary representations and to compute precise "spectral gaps" for them.

Tue, 09 Jun 2020
14:15
L4

TBA

Alexander Kleshchev
(University of Oregon)
Tue, 17 Mar 2020
14:15
L4

TBA (cancelled)

Peter Schneider
(Universitat Munster)
Tue, 10 Mar 2020
14:15
L4

An uncountable Mittag-Leffler condition with applications to p-adic locally convex vector spaces

Andrea Pulita
(Universite Grenoble-Alpes)
Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.

Tue, 03 Mar 2020
14:15
L4

2-representation theory of Soergel bimodules

Vanessa Miemietz
(University of East Anglia)
Abstract

I will explain the basics of 2-representation theory and will explain an approach to classifying 'simple' 2-representations of the Hecke 2-category (aka Soergel bimodules) for finite Coxeter types.

Tue, 25 Feb 2020
14:15
L4

A gallery model for affine flag varieties

Yusra Naqvi
(University of Sidney)
Abstract

Positively folded galleries arise as images of retractions of buildings onto a fixed apartment and play a role in many areas of maths (such as in the study of affine Hecke algebras, Macdonald polynomials, MV-polytopes, and affine Deligne-Lusztig varieties). In this talk, we will define positively folded galleries, and then look at how these can be used to study affine flag varieties. We will also look at a new recursive description of the set of end alcoves of folded galleries with respect to alcove-induced orientations, which gives us a combinatorial description of certain double coset intersections in these affine flag varieties. This talk is based on joint work with Elizabeth Milićević, Petra Schwer and Anne Thomas.

Tue, 04 Feb 2020
14:15
L4

Tensor-triangular fields

Paul Balmer
(UCLA)
Abstract

I'll give a general introduction to tensor-triangular geometry, the algebraic study of tensor-triangulated categories as they appear in topology, geometry and representation theory. Then I'll discuss an elementary idea, that of a "field" in this theory, and explain what we currently know about them.

Tue, 28 Jan 2020

14:15 - 15:15
L4

Soficity and variations on Higman's group.

Prof. Tim Riley
(Cornell)
Further Information


A group is sofic when every finite subset can be well approximated in a finite symmetric group. The outstanding question, due to Gromov, is whether every group is sofic.
Helfgott and Juschenko argued that a celebrated group constructed by Higman is unlikely to be sofic because its soficity would imply the existence of some seemingly pathological functions.  I will describe joint work with Martin Kassabov and Vivian Kuperberg in which we construct variations on Higman's group and explore their soficity.  
 

Tue, 03 Dec 2019
14:15
L4

Deformation of a Howe duality

Marcelo De Martino
(Oxford University)
Abstract

In this talk, I will report about a joint work with D. Ciubotaru, in which we investigate the Dunkl version of the classical Howe-duality (O(k),spo(2|2)). Similar Fischer-type decompositions were studied before in the works of Ben-Said, Brackx, De Bie, De Schepper, Eelbode, Orsted, Soucek and Somberg for other Howe-dual pairs. Our work builds on the notion of a Dirac operator for Drinfeld algebras introduced by Ciubotaru, which was inspired by the analogous theory for Lie algebras, as well as the work of Cheng and Wang on classical Howe dualities.

Tue, 26 Nov 2019
14:15
L4

Heisenberg groups and graded Lie algebras

Beth Romano
(Oxford University)
Abstract

I will talk about a way of building graded Lie algebras from certain Heisenberg groups. The input for this construction arises naturally when studying families of algebraic curves, and we'll look at some examples in which Lie theory interacts with number theory in an illuminating way. 

Tue, 05 Nov 2019

14:15 - 15:15
L4

Axiomatizability and profinite groups

Dan Segal
(Oxford University)
Abstract

A mathematical structure is `axiomatizable' if it is completely determined by some family of sentences in a suitable first-order language. This idea has been explored for various kinds of structure, but I will concentrate on groups. There are some general results (not many) about which groups are or are not axiomatizable; recently there has been some interest in the sharper concept of 'finitely axiomatizable' or FA - that is, when only a finite set of sentences (equivalently, a single sentence) is allowed.

While an infinite group cannot be FA, every finite group is so, obviously. A profinite group is kind of in between: it is infinite (indeed, uncountable), but compact as a topological group; and these groups share many properties of finite groups, though sometimes for rather subtle reasons. I will discuss some recent work with Andre Nies and Katrin Tent where we prove that certain kinds of profinite group are FA among profinite groups. The methods involve a little model theory, and quite a lot of group theory.

 

Tue, 22 Oct 2019
14:15
L4

Representations associated to gradations of colour Lie algebras

Philippe Meyer
(Oxford University)
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.

Tue, 15 Oct 2019

14:15 - 15:15
L4

Combinatorial anabelian geometry and its applications

Shota Tsujimura
(RIMS, Kyoto)
Abstract

Combinatorial anabelian geometry is a modern branch of anabelian geometry which deals with those aspects of anabelian geometry which manifest themselves over algebraically closed fields of characteristic zero. The origin of combinatorial anabelian geometry is in S. Mochizuki’s pioneering papers from 2007, in which he reinterpreted and generalised some key components of his earlier famous proof of the Grothendieck conjecture. S. Mochizuki  discovered that one can separate arguments which work over algebraically closed fields from arithmetic arguments, and study the former by using combinatorial methods. This led to a very nontrivial development of the theory of combinatorial anabelian geometry by S. Mochizuki and Y. Hoshi and other mathematicians. In this talk, after introducing the theory of combinatorial anabelian geometry I will discuss  applications of combinatorial anabelian geometry to the study of the absolute Galois group of number fields and of p-adic local fields and to the study of the Grothendieck-Teichmueller group. In particular, I will talk about the recent construction of a splitting of the natural inclusion of the absolute Galois group of p-adic numbers to the (largest) p-adic Grothendieck–Teichmueller group and a splitting of the natural embedding of the absolute Galois group of rationals into the commensurator of the absolute Galois group of the maximal abelian extension of rationals in the Grothendieck–Teichmueller group.
 

Tue, 24 Sep 2019
14:15
L4

Contravariant forms on Whittaker modules

Adam Brown
(IST Austria)
Abstract

In 1985, McDowell introduced a family of parabolically induced Whittaker modules over a complex semisimple Lie algebra, which includes both Verma modules and the nondegenerate Whittaker modules studied by Kostant. Many classical results for Verma modules and the Bernstein--Gelfand--Gelfand category O have been generalized to the category of Whittaker modules introduced by Milicic--Soergel, including the classification of irreducible objects and the Kazhdan--Lusztig conjectures. Contravariant forms on Verma modules are unique up to scaling and play a key role in the definition of the Jantzen filtration. In this talk I will discuss a classification of contravariant forms on parabolically induced Whittaker modules. In a recent result, joint with Anna Romanov, we show that the dimension of the space of contravariant forms on a parabolically induced Whittaker module is given by the cardinality of a Weyl group. This result illustrates a divergence from classical results for Verma modules, and gives insight to two significant open problems in the theory of Whittaker modules: the Jantzen conjecture and the absence of an algebraic definition of duality.

Tue, 18 Jun 2019

14:15 - 15:15
L4

The congruence subgroup problem for a family of branch groups

Rachel Skipper
(Lyon)
Abstract

A group acting on a regular rooted tree has the congruence subgroup property if every subgroup of finite index contains a level stabilizer. The congruence subgroup problem then asks to quantitatively describe the kernel of the surjection from the profinite completion to the topological closure as a subgroup of the automorphism group of the tree. We will study the congruence subgroup property for a family of branch groups whose construction generalizes that of the Hanoi Towers group, which models the game “The Towers of Hanoi".

 

Tue, 04 Jun 2019
14:15
L4

Fourier-Mukai transforms for deformation quantization modules (joint work with David Gepner)

Francois Petit
(University of Luxembourg)
Abstract

Deformation quantization modules or DQ-modules where introduced by M. Kontsevich to study the deformation quantization of complex Poisson varieties. It has been advocated that categories of DQ-modules should provide invariants of complex symplectic varieties and in particular a sort of complex analog of the Fukaya category. Hence, it is natural to aim at describing the functors between such categories and relate them with categories appearing naturally in algebraic geometry. Relying, on methods of homotopical algebra, we obtain an analog of Orlov representation theorem for functors between categories of DQ-modules and relate these categories to deformations of the category of quasi-coherent sheaves.
 

Tue, 28 May 2019

14:15 - 15:30
L4

Linear characters of Sylow subgroups of the symmetric group

Stacey Law
(Oxford University)
Abstract

Let $p$ be an odd prime and $n$ a natural number. We determine the irreducible constituents of the permutation module induced by the action of the symmetric group $S_n$ on the cosets of a Sylow $p$-subgroup $P_n$. In the course of this work, we also prove a symmetric group analogue of a well-known result of Navarro for $p$-solvable groups on a conjugacy action of $N_G(P)$. Before describing some consequences of these results, we will give an overview of the background and recent related results in the area.

Tue, 21 May 2019
14:15
L4

A simple proof of the classification of unitary highest weight modules

Pavle Pandzic
(University of Zagreb)
Abstract

Unitary highest weight modules were classified in the 1980s by Enright-Howe-Wallach and independently by Jakobsen. The classification is based on a version of the Dirac inequality, but the proofs also require a number of other techniques and are quite involved. We present a much simpler proof based on a different version of the Dirac inequality. This is joint work with Vladimir Soucek and Vit Tucek.
 

Tue, 14 May 2019
14:15
L4

Exotic Springer Fibres and Type C combinatorics

Neil Saunders
(University of Greenwich)
Abstract

For $G$ connected, reductive algebraic group defined over $\mathbb{C}$ the Springer Correspondence gives a bijection between the irreducible representations of the Weyl group $W$ of $G$ and certain pairs comprising a $G$-orbit on the nilpotent cone of the Lie algebra of $G$ and an irreducible local system attached to that $G$-orbit. These irreducible representations can be concretely realised as a W-action on the top degree homology of the fibres of the Springer resolution. These Springer fibres are geometrically very rich and provide interesting Weyl group combinatorics: for instance, the irreducible components of these Springer fibres form a basis for the corresponding irreducible representation of $W$. In this talk, I'll give a general survey of the Springer Correspondence and then discuss recent joint projects with Daniele Rosso, Vinoth Nandakumar and Arik Wilbert on Kato's Exotic Springer correspondence.

Tue, 26 Feb 2019
14:15
L4

Kac-Moody correction factors and Eisenstein series

Thomas Oliver
(Oxford)
Abstract

Formally, the Fourier coefficients of Eisenstein series on Kac-Moody groups contain as yet mysterious automorphic L-functions relevant to open conjectures such as that of Ramanujan and Langlands functoriality. In this talk, we will consider the constant Fourier coefficient, if it even makes sense rigorously, and its relationship to the geometry and combinatorics of a Kac-Moody group. Joint work with Kyu-Hwan Lee.