Past Algebra Seminar

22 October 2019
14:15
Philippe Meyer
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.

15 October 2019
14:15
Shota Tsujimura
Abstract

Combinatorial anabelian geometry is a modern branch of anabelian geometry which deals with those aspects of anabelian geometry which manifest themselves over algebraically closed fields of characteristic zero. The origin of combinatorial anabelian geometry is in S. Mochizuki’s pioneering papers from 2007, in which he reinterpreted and generalised some key components of his earlier famous proof of the Grothendieck conjecture. S. Mochizuki  discovered that one can separate arguments which work over algebraically closed fields from arithmetic arguments, and study the former by using combinatorial methods. This led to a very nontrivial development of the theory of combinatorial anabelian geometry by S. Mochizuki and Y. Hoshi and other mathematicians. In this talk, after introducing the theory of combinatorial anabelian geometry I will discuss  applications of combinatorial anabelian geometry to the study of the absolute Galois group of number fields and of p-adic local fields and to the study of the Grothendieck-Teichmueller group. In particular, I will talk about the recent construction of a splitting of the natural inclusion of the absolute Galois group of p-adic numbers to the (largest) p-adic Grothendieck–Teichmueller group and a splitting of the natural embedding of the absolute Galois group of rationals into the commensurator of the absolute Galois group of the maximal abelian extension of rationals in the Grothendieck–Teichmueller group.
 

24 September 2019
14:15
Adam Brown
Abstract

In 1985, McDowell introduced a family of parabolically induced Whittaker modules over a complex semisimple Lie algebra, which includes both Verma modules and the nondegenerate Whittaker modules studied by Kostant. Many classical results for Verma modules and the Bernstein--Gelfand--Gelfand category O have been generalized to the category of Whittaker modules introduced by Milicic--Soergel, including the classification of irreducible objects and the Kazhdan--Lusztig conjectures. Contravariant forms on Verma modules are unique up to scaling and play a key role in the definition of the Jantzen filtration. In this talk I will discuss a classification of contravariant forms on parabolically induced Whittaker modules. In a recent result, joint with Anna Romanov, we show that the dimension of the space of contravariant forms on a parabolically induced Whittaker module is given by the cardinality of a Weyl group. This result illustrates a divergence from classical results for Verma modules, and gives insight to two significant open problems in the theory of Whittaker modules: the Jantzen conjecture and the absence of an algebraic definition of duality.

18 June 2019
14:15
Rachel Skipper
Abstract

A group acting on a regular rooted tree has the congruence subgroup property if every subgroup of finite index contains a level stabilizer. The congruence subgroup problem then asks to quantitatively describe the kernel of the surjection from the profinite completion to the topological closure as a subgroup of the automorphism group of the tree. We will study the congruence subgroup property for a family of branch groups whose construction generalizes that of the Hanoi Towers group, which models the game “The Towers of Hanoi".

 

4 June 2019
14:15
Francois Petit
Abstract

Deformation quantization modules or DQ-modules where introduced by M. Kontsevich to study the deformation quantization of complex Poisson varieties. It has been advocated that categories of DQ-modules should provide invariants of complex symplectic varieties and in particular a sort of complex analog of the Fukaya category. Hence, it is natural to aim at describing the functors between such categories and relate them with categories appearing naturally in algebraic geometry. Relying, on methods of homotopical algebra, we obtain an analog of Orlov representation theorem for functors between categories of DQ-modules and relate these categories to deformations of the category of quasi-coherent sheaves.
 

28 May 2019
14:15
to
15:30
Stacey Law
Abstract

Let $p$ be an odd prime and $n$ a natural number. We determine the irreducible constituents of the permutation module induced by the action of the symmetric group $S_n$ on the cosets of a Sylow $p$-subgroup $P_n$. In the course of this work, we also prove a symmetric group analogue of a well-known result of Navarro for $p$-solvable groups on a conjugacy action of $N_G(P)$. Before describing some consequences of these results, we will give an overview of the background and recent related results in the area.

21 May 2019
14:15
Pavle Pandzic
Abstract

Unitary highest weight modules were classified in the 1980s by Enright-Howe-Wallach and independently by Jakobsen. The classification is based on a version of the Dirac inequality, but the proofs also require a number of other techniques and are quite involved. We present a much simpler proof based on a different version of the Dirac inequality. This is joint work with Vladimir Soucek and Vit Tucek.
 

14 May 2019
14:15
Neil Saunders
Abstract

For $G$ connected, reductive algebraic group defined over $\mathbb{C}$ the Springer Correspondence gives a bijection between the irreducible representations of the Weyl group $W$ of $G$ and certain pairs comprising a $G$-orbit on the nilpotent cone of the Lie algebra of $G$ and an irreducible local system attached to that $G$-orbit. These irreducible representations can be concretely realised as a W-action on the top degree homology of the fibres of the Springer resolution. These Springer fibres are geometrically very rich and provide interesting Weyl group combinatorics: for instance, the irreducible components of these Springer fibres form a basis for the corresponding irreducible representation of $W$. In this talk, I'll give a general survey of the Springer Correspondence and then discuss recent joint projects with Daniele Rosso, Vinoth Nandakumar and Arik Wilbert on Kato's Exotic Springer correspondence.

26 February 2019
14:15
Thomas Oliver
Abstract

Formally, the Fourier coefficients of Eisenstein series on Kac-Moody groups contain as yet mysterious automorphic L-functions relevant to open conjectures such as that of Ramanujan and Langlands functoriality. In this talk, we will consider the constant Fourier coefficient, if it even makes sense rigorously, and its relationship to the geometry and combinatorics of a Kac-Moody group. Joint work with Kyu-Hwan Lee.

 

Pages