Signed permutation modules of symmetric groups and Iwahori-hecke algebras
Abstract
Signed permutation modules of symmetric groups and Iwahori-hecke algebras
Forthcoming events in this series
Signed permutation modules of symmetric groups and Iwahori-hecke algebras
There are many interesting problems surrounding the unit group U(RG) of the ring RG, where R is a commutative ring and G is a finite group. Of particular interest are the finite subgroups of U(RG). In the seventies, Zassenhaus conjectured that any u in U(ZG) is conjugate, in the group U(QG), to an element of the form +/-g, where g is an element of the group G. This came to be known as the "(first) Zassenhaus conjecture". I will talk about the recent construction of a counterexample to this conjecture (this is joint work with L. Margolis), and recent work on related questions in the modular representation theory of finite groups.
Abstract: In 2016 Ayyer, Prasad and Spallone proved that the restriction to
S_{n-1} of any odd degree irreducible character of S_n has a unique irreducible
constituent of odd degree.
This result was later generalized by Isaacs, Navarro Olsson and Tiep.
In this talk I will survey some recent developments on this topic.
Decomposition (aka unital 2-Segal) spaces are simplicial ∞-groupoids with a certain exactness property: they take pushouts of active (end-point preserving) along inert (distance preserving) maps in the simplicial category Δ to pullbacks. They encode the information needed for an 'objective' generalisation of the notion of incidence (co)algebra of a poset, and motivating examples include the decomposition spaces for (derived) Hall algebras, the Connes-Kreimer algebra of trees and Schmitt's algebra of graphs. In this talk I will survey recent activity in this area, including some work in progress on a categorification of (Hopf) bialgebroids.
This is joint work with Imma Gálvez and Joachim Kock.
Let $\mathfrak g$ be a semisimple Lie algebra. A $\mathfrak g$-algebra is an associative algebra $R$ on which $\mathfrak g$ acts by derivations. There are several significant examples. Let $V$ a finite dimensional $\mathfrak g$ module and take $R=\mathrm{End} V$ or $R=D(V)$ being the ring of derivations on $V$ . Again take $R=U(\mathfrak g)$. In all these cases $ S=U(\mathfrak g)\otimes R$ is again a $\mathfrak g$-algebra. Finally let $T$ denote the subalgebra of invariants of $S$.
For the first choice of $R$ above the representation theory of $T$ can be rather explicitly described in terms of Kazhdan-Lusztig polynomials. In the second case the simple $T$ modules can be described in terms of the simple $D(V)$ modules. In the third case it is shown that all simple $T$ modules are finite dimensional, despite the fact that $T$ is not a PI ring, except for the case $\mathfrak g =\mathfrak {sl}(2)$.
A law for a group G is a non-trivial equation satisfied by all tuples of elements in G. We study the length of the shortest law holding in a finite group. We produce new short laws holding (a) in finite simple groups of Lie type and (b) simultaneously in all finite groups of small order. As an application of the latter we obtain a new lower bound on the residual finiteness growth of free groups. This talk is based on joint work with Andreas Thom.
Hall algebras of categories of quiver representations and coherent sheaves
on smooth projective curves over F_q recover interesting
representation-theoretic objects such as quantum groups and their
generalizations. I will define and describe the structure of the Hall
algebra of coherent sheaves on a projective variety over F_1, with P^2 as
the main example. Examples suggest that it should be viewed as a degenerate
q->1 limit of its counterpart over F_q.
The Peter-Weyl idempotent of a parahoric subgroup is the sum of the idempotents of irreducible representations which have a nonzero Iwahori fixed vector. The associated convolution algebra is called a Peter-Weyl Iwahori algebra. We show any Peter-Weyl Iwahori algebra is Morita equivalent to the Iwahori-Hecke algebra. Both the Iwahori-Hecke algebra and a Peter-Weyl Iwahori algebra have a natural C*-algebra structure, and the Morita equivalence preserves irreducible hermitian and unitary modules. Both algebras have another anti-involution denoted as •, and the Morita equivalence preserves irreducible and unitary modules for the • involution. This work is joint with Dan Barbasch.
Let $F$ be a non-Archimedean local field with ring of integers $\mathcal O$ and maximal ideal $\mathfrak p$. T. Shintani and G. Hill independently introduced a large class of smooth representations of $GL_N(\mathcal O)$, called regular representations. Roughly speaking they correspond to elements in the Lie algebra $M_N(\mathcal O)$ which are regular mod $\mathfrak p$ (i.e, having centraliser of dimension $N$). The study of regular representations of $GL_N(\mathcal O)$ goes back to Shintani in the 1960s, and independently and later, Hill, who both constructed the regular representations with even conductor, but left the much harder case of odd conductor open. In recent simultaneous and independent work, Krakovski, Onn and Singla gave a construction of the regular representations of $GL_N(\mathcal O)$ when the residue characteristic of $\mathcal O$ is not $2$.
In this talk I will present a complete construction of all the regular representations of $GL_N(\mathcal O)$. The approach is analogous to, and motivated by, the construction of supercuspidal representations of $GL_N(F)$ due to Bushnell and Kutzko. This is joint work with Shaun Stevens.
It is well-known that nilpotent orbits in $\mathfrak{sl}_n(\mathbb C)$ correspond bijectively with the set of partitions of $n$, such that the closure (partial) ordering on orbits is sent to the dominance order on partitions. Taking dual partitions simply turns this poset upside down, so in type $A$ there is an order-reversing involution on the poset of nilpotent orbits. More generally, if $\mathfrak g$ is any simple Lie algebra over $\mathbb C$ then Lusztig-Spaltenstein duality is an order-reversing bijection from the set of special nilpotent orbits in $\mathfrak g$ to the set of special nilpotent orbits in the Langlands dual Lie algebra $\mathfrak g^L$.
It was observed by Kraft and Procesi that the duality in type $A$ is manifested in the geometry of the nullcone. In particular, if two orbits $\mathcal O_1<\mathcal O_2$ are adjacent in the partial order then so are their duals $\mathcal O_1^t>\mathcal O_2^t$, and the isolated singularity attached to the pair $(\mathcal O_1,\mathcal O_2)$ is dual to the singularity attached to $(\mathcal O_2^t,\mathcal O_1^t)$: a Kleinian singularity of type $A_k$ is swapped with the minimal nilpotent orbit closure in $\mathfrak{sl}_{k+1}$ (and vice-versa). Subsequent work of Kraft-Procesi determined singularities associated to such pairs in the remaining classical Lie algebras, but did not specifically touch on duality for pairs of special orbits.
In this talk, I will explain some recent joint research with Fu, Juteau and Sommers on singularities associated to pairs $\mathcal O_1<\mathcal O_2$ of (special) orbits in exceptional Lie algebras. In particular, we (almost always) observe a generalized form of duality for such singularities in any simple Lie algebra.
In this joint work with D. Ciubotaru, we introduce the notion of local and global indices of Dirac operators for a rational Cherednik algebra H, with underlying reflection group G. In the local theory, I will report on some relations between the (local) Dirac index of a simple module in category O, the graded G-character and the composition series polynomials for standard modules. In the global theory, we introduce an "integral-reflection" module over which we define and compute the index of a (global) Dirac operator and show that the index is independent of the parameters. If time permits, I will discuss some local-global relations.
Pseudo-reductive groups are smooth connected linear algebraic groups over a field k whose k-defined unipotent radical is trivial. If k is perfect then all pseudo-reductive groups are reductive, but if k is imperfect (hence of characteristic p) then one gets a strictly larger collection of groups. They come up in a number of natural situations, not least when one wishes to say something about the simple representations of all smooth connected linear algebraic groups. Recent work by Conrad-Gabber-Prasad has made it possible to reduce the classification of the simple representations of pseudo-reductive groups to the split reductive case. I’ll explain how. This is joint work with Mike Bate.
In my talk I will explain how to relate 1-dimensional representations of finite W-algebras with multiplicity free primitive ideals of universal enveloping algebras and representations of minimal dimension of the corresponding reduced enveloping algebras (Humphreys' conjecture). I will also mention some open problems in the field.
Dimer models with boundary were introduced in joint work with King and Marsh as a natural
generalisation of dimers. We use these to derive certain infinite dimensional algebras and
consider idempotent subalgebras w.r.t. the boundary.
The dimer models can be embedded in a surface with boundary. In the disk case, the
maximal CM modules over the boundary algebra are a Frobenius category which
categorifies the cluster structure of the Grassmannian.
We give a short reminder about central results of classical tilting theory,
including the Brenner-Butler tilting theorem, and
homological properties of tilted and quasi-tilted algebras. We then discuss
2-term silting complexes and endomorphism algebras of such objects,
and in particular show that some of these classical results have very natural
generalizations in this setting.
(joint work with Yu Zhou)
Heckman introduced N operators on the space of polynomials in N variables, such that these operators form a covariant set relative to permutations of the operators and variables, and such that Jack symmetric polynomials are eigenfunctions of the power sums of these operators. We introduce the analogues of these N operators for Macdonald symmetric polynomials, by using Cherednik operators. The latter operators pairwise commute, and Macdonald polynomials are eigenfunctions of their power sums. We compute the limits of our operators at N → ∞ . These limits yield a Lax operator for Macdonald symmetric functions. This is a joint work with Evgeny Sklyanin.
Let $A$ denote either the automorphism group of the free group of rank $n$ or the mapping class group of an orientable surface of genus $n$ with at most 1 boundary component, and let $G$ be either the subgroup of IA-automorphisms or the Torelli subgroup of $A$, respectively. I will discuss various finiteness properties of subgroups containing $G_N$, the $N$-th term of the lower central series of $G$, for sufficiently small $N$. In particular, I will explain why
(1) If $n \geq 4N-1$, then any subgroup of G containing $G_N$ (e.g. the $N$-th term of the Johnson filtration) is finitely generated
(2) If $n \geq 8N-3$, then any finite index subgroup of $A$ containing $G_N$ has finite abelianization.
The talk will be based on a joint work with Sue He and a joint work with Tom Church and Andrew Putman
Let G be a split reductive group over a finite extension k of Q_p. Reeder and Yu have given a new construction of supercuspidal representations of G(k) using geometric invariant theory. Their construction is uniform for all p but requires as input stable vectors in certain representations coming from Moy-Prasad filtrations. In joint work, Jessica Fintzen and I have classified the representations of this kind which contain stable vectors; as a corollary, the construction of Reeder-Yu gives new representations when p is small. In my talk, I will give an overview of this work, as well as explicit examples for the case when G = G_2. For these examples, I will explicitly describe the locus of all stable vectors, as well as the Langlands parameters which correspond under the local Langlands correspondence to the representations of G(k).
The Morita Frobenius number of an algebra is the number of Morita equivalence classes of its Frobenius twists. Morita Frobenius numbers were introduced by Kessar in 2004 in the context of Donovan’s Conjecture in block theory. I will present the latest results of a project in which we aim to calculate the Morita Frobenius numbers of the blocks of quasi-simple finite groups. I will also discuss the importance of a recent result of Bonnafe-Dat-Rouquier for our methods, and explain the relationship between Morita Frobenius numbers and Donovan’s Conjecture.
In the ongoing programme to classify noncommutative projective surfaces (connected graded noetherian domains of Gelfand-Kirillov dimension three) a natural question is: what are the minimal models within a birational class? It is not even clear a priori what the correct definition is of a minimal model in this context.
We show that a generic Sklyanin algebra (a noncommutative analogue of P^2) satisfies the surprising property that it has no birational connected graded noetherian overrings, and explain why this is a reasonable definition of 'minimal model.' We show also that the noncommutative versions of P^1xP^1 and of the Hirzebruch surface F_2 are minimal.
This is joint work in progress with Dan Rogalski and Toby Stafford.
I will discuss recent results in finite simple groups. These include growth, generation (with a number theoretic flavour), and conjectures of Gowers and Viola on mixing and complexity whose proof requires representation theory as a main tool.
We give an overview of joint work with Lewis Topley on modular W-algebras. In particular, we outline the classification 1-dimensional modules for modular W-algebras for gl_n, which in turn this leads to a classification of minimal dimensional modules for reduced enveloping algebras for gl_n.
Work of Bezrukavnikov-Kazhdan-Varshavsky uses an equivariant system of trivial idempotents of Moy-Prasad groups to obtain an
Euler-Poincare formula for the r-depth Bernstein projector. We establish an Euler-Poincare formula for the projector to an individual depth zero Bernstein component in terms of an equivariant system of Peter-Weyl idempotents of parahoric subgroups P associated to a block of the reductive quotient of P. This work is joint with Dan Barbasch and Dan Ciubotaru.