Forthcoming events in this series


Wed, 23 Feb 2022
14:00

TBA

Jemima Tabeart
Abstract

TBA

Thu, 17 Feb 2022
14:00
Virtual

K-Spectral Sets

Anne Greenbaum
(University of Washington)
Abstract

Let $A$ be an $n$ by $n$ matrix or a bounded linear operator on a complex Hilbert space $(H, \langle \cdot , \cdot \rangle , \| \cdot \|)$. A closed set $\Omega \subset \mathbb{C}$ is a $K$-spectral set for $A$ if the spectrum of $A$ is contained in $\Omega$ and if, for all rational functions $f$ bounded in $\Omega$, the following inequality holds:
\[\| f(A) \| \leq K \| f \|_{\Omega} ,\]
where $\| \cdot \|$ on the left denotes the norm in $H$ and $\| \cdot \|_{\Omega}$ on the right denotes the $\infty$-norm on $\Omega$. A simple way to obtain a $K$ value for a given set $\Omega$ is to use the Cauchy integral formula and replace the norm of the integral by the integral of the resolvent norm:
\[f(A) = \frac{1}{2 \pi i} \int_{\partial \Omega} ( \zeta I - A )^{-1}
f( \zeta )\,d \zeta \Rightarrow
\| f(A) \| \leq \frac{1}{2 \pi} \left( \int_{\partial \Omega}
\| ( \zeta I - A )^{-1} \|~| d \zeta | \right) \| f \|_{\Omega} .\]
Thus one can always take
\[K = \frac{1}{2 \pi} \int_{\partial \Omega} \| ( \zeta I - A )^{-1} \| | d \zeta | .\]
In M. Crouzeix and A. Greenbaum, Spectral sets: numerical range and beyond, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1087-1101, different bounds on $K$ were derived.  I will show how these compare to that from the Cauchy integral formula for a variety of applications.  In case $A$ is a matrix and $\Omega$ is simply connected, we can numerically compute what we believe to be the optimal value for $K$ (and, at least, is a lower bound on $K$).  I will show how these values compare with the proven bounds as well.

(joint with  Michel Crouzeix and Natalie Wellen)
 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 10 Feb 2022
14:00
Virtual

Linear and Sublinear Time Spectral Density Estimation

Chris Musco
(New York University)
Abstract

I will discuss new work on practically popular algorithms, including the kernel polynomial method (KPM) and moment matching method, for approximating the spectral density (eigenvalue distribution) of an n x n symmetric matrix A. We will see that natural variants of these algorithms achieve strong worst-case approximation guarantees: they can approximate any spectral density to epsilon accuracy in the Wasserstein-1 distance with roughly O(1/epsilon) matrix-vector multiplications with A. Moreover, we will show that the methods are robust to *in accuracy* in these matrix-vector multiplications, which allows them to be combined with any approximation multiplication algorithm. As an application, we develop a randomized sublinear time algorithm for approximating the spectral density of a normalized graph adjacency or Laplacian matrices. The talk will cover the main tools used in our work, which include random importance sampling methods and stability results for computing orthogonal polynomials via three-term recurrence relations.

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 03 Feb 2022
14:00
L3

Multigrid for climate- and weather prediction

Eike Mueller
(University of Bath)
Abstract

Climate- and weather prediction centres such as the Met Office rely on efficient numerical methods for simulating large scale atmospheric flow. One computational bottleneck in many models is the repeated solution of a large sparse system of linear equations. Preconditioning this system is particularly challenging for state-of-the-art discretisations, such as (mimetic) finite elements or Discontinuous Galerkin (DG) methods. In this talk I will present recent work on developing efficient multigrid preconditioners for practically relevant modelling codes. As reported in a REF2021 Industrial Impact Case Study, multigrid has already led to runtime savings of around 10%-15% for operational global forecasts with the Unified Model. Multigrid also shows superior performance in the Met Office next-generation LFRic model, which is based on a non-trivial finite element discretisation.

Thu, 27 Jan 2022
14:00
Virtual

Approximation and discretization beyond a basis: theory and applications

Daan Huybrechs
(KU Leuven)
Abstract

Function approximation, as a goal in itself or as an ingredient in scientific computing, typically relies on having a basis. However, in many cases of interest an obvious basis is not known or is not easily found. Even if it is, alternative representations may exist with much fewer degrees of freedom, perhaps by mimicking certain features of the solution into the “basis functions" such as known singularities or phases of oscillation. Unfortunately, such expert knowledge typically doesn’t match well with the mathematical properties of a basis: it leads instead to representations which are either incomplete or overcomplete. In turn, this makes a problem potentially unsolvable or ill-conditioned. We intend to show that overcomplete representations, in spite of inherent ill-conditioning, often work wonderfully well in numerical practice. We explore a theoretical foundation for this phenomenon, use it to devise ground rules for practitioners, and illustrate how the theory and its ramifications manifest themselves in a number of applications.

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Thu, 20 Jan 2022
14:00
Virtual

Eigenvalue Bounds for Double Saddle-Point Systems

Chen Greif
(University of British Colombia)
Abstract

We use energy estimates to derive new bounds on the eigenvalues of a generic form of double saddle-point matrices, with and without regularization terms. Results related to inertia and algebraic multiplicity of eigenvalues are also presented. The analysis includes eigenvalue bounds for preconditioned matrices based on block-diagonal Schur complement-based preconditioners, and it is shown that in this case the eigenvalues are clustered within a few intervals bounded away from zero. The analytical observations are linked to a few multiphysics problems of interest. This is joint work with Susanne Bradley.

 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 02 Dec 2021
14:00
Virtual

Variational and phase-field models of brittle fracture: Past successes and current issues

Blaise Bourdin
(McMaster University)
Abstract

Variational phase-field models of fracture have been at the center of a multidisciplinary effort involving a large community of mathematicians, mechanicians, engineers, and computational scientists over the last 25 years or so.

I will start with a modern interpretation of Griffith's classical criterion as a variational principle for a free discontinuity energy and will recall some of the milestones in its analysis. Then, I will introduce the phase-field approximation per se and describe its numerical implementation. I illustrate how phase-field models have led to major breakthroughs in the predictive simulation of fracture in complex situations.

I then will turn my attention to current issues, with a specific emphasis on crack nucleation in nominally brittle materials. I will recall the fundamental incompatibility between Griffith’s theory and nucleation criteria based on a stress yield surface: the strength vs. toughness paradox. I will then present several attempts at addressing this issue within the realm of phase-fracture and discuss their respective strengths and weaknesses. 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 25 Nov 2021
14:00
Virtual

Adaptive multilevel delayed acceptance

Tim Dodwell
(University of Exeter)
Abstract

Uncertainty Quantification through Markov Chain Monte Carlo (MCMC) can be prohibitively expensive for target probability densities with expensive likelihood functions, for instance when the evaluation it involves solving a Partial Differential Equation (PDE), as is the case in a wide range of engineering applications. Multilevel Delayed Acceptance (MLDA) with an Adaptive Error Model (AEM) is a novel approach, which alleviates this problem by exploiting a hierarchy of models, with increasing complexity and cost, and correcting the inexpensive models on-the-fly. The method has been integrated within the open-source probabilistic programming package PyMC3 and is available in the latest development version.

In this talk I will talk about the problems with the Multilevel Markov Chain Monte Carlo (Dodwell et al. 2015). In so we will prove detailed balance for Adaptive Multilevel Delayed Acceptance, as well as showing that multilevel variance reduction can be achieved without bias, not possible in the original MLMCMC framework.

I will talk about our implementation in the latest version of pymc3, and demonstrate how for classical inverse problem benchmarks the AMLDA sampler offers huge computational savings (> factor of 100 fold speed up).

Finally I will talk heuristically about new / future research, in which we seek to develop parallel strategies for this inherently sequential sampler, as well as point to interesting applied application areas in which the method is proving particular effective.

 

--

This talk will be in person.

Thu, 18 Nov 2021
14:00
L4

Infinite-Dimensional Spectral Computations

Matt Colbrook
(University of Cambridge)
Abstract

Computing spectral properties of operators is fundamental in the sciences, with applications in quantum mechanics, signal processing, fluid mechanics, dynamical systems, etc. However, the infinite-dimensional problem is infamously difficult (common difficulties include spectral pollution and dealing with continuous spectra). This talk introduces classes of practical resolvent-based algorithms that rigorously compute a zoo of spectral properties of operators on Hilbert spaces. We also discuss how these methods form part of a broader programme on the foundations of computation. The focus will be computing spectra with error control and spectral measures, for general discrete and differential operators. Analogous to eigenvalues and eigenvectors, these objects “diagonalise” operators in infinite dimensions through the spectral theorem. The first is computed by an algorithm that approximates resolvent norms. The second is computed by building convolutions of appropriate rational functions with the measure via the resolvent operator (solving shifted linear systems). The final part of the talk provides purely data-driven algorithms that compute the spectral properties of Koopman operators, with convergence guarantees, from snapshot data. Koopman operators “linearise” nonlinear dynamical systems, the price being a reduction to an infinite-dimensional spectral problem (c.f. “Koopmania”, describing their surge in popularity). The talk will end with applications of these new methods in several thousand state-space dimensions.

Thu, 11 Nov 2021
14:00
Virtual

A Fast, Stable QR Algorithm for the Diagonalization of Colleague Matrices

Vladimir Rokhlin
(Yale University)
Abstract

 

The roots of a function represented by its Chebyshev expansion are known to be the eigenvalues of the so-called colleague matrix, which is a Hessenberg matrix that is the sum of a symmetric tridiagonal matrix and a rank 1 perturbation. The rootfinding problem is thus reformulated as an eigenproblem, making the computation of the eigenvalues of such matrices a subject of significant practical interest. To obtain the roots with the maximum possible accuracy, the eigensolver used must posess a somewhat subtle form of stability.

In this talk, I will discuss a recently constructed algorithm for the diagonalization of colleague matrices, satisfying the relevant stability requirements.  The scheme has CPU time requirements proportional to n^2, with n the dimensionality of the problem; the storage requirements are proportional to n. Furthermore, the actual CPU times (and storage requirements) of the procedure are quite acceptable, making it an approach of choice even for small-scale problems. I will illustrate the performance of the algorithm with several numerical examples.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Thu, 04 Nov 2021
14:00
L4

Rational approximation and beyond, or, What I did during the pandemic

Nick Trefethen
(Mathematical Institute (University of Oxford))
Abstract

The past few years have been an exciting time for my work related to rational approximation.  This talk will present four developments:

1. AAA approximation (2016, with Nakatsukasa & Sète)
2. Root-exponential convergence and tapered exponential clustering (2020, with Nakatsukasa & Weideman)
3. Lightning (2017-2020, with Gopal & Brubeck)
4. Log-lightning (2020-21, with Nakatsukasa & Baddoo)

Two other topics will not be discussed:

X. AAA-Lawson approximation (2018, with Nakatsukasa)
Y. AAA-LS approximation (2021, with Costa)

Thu, 28 Oct 2021
14:00
Virtual

Randomized FEAST Algorithm for Generalized Hermitian Eigenvalue Problems with Probabilistic Error Analysis

Agnieszka Międlar
(University of Kansas)
Further Information

This talk is hosted by the Computational Mathematics Group of the Rutherford Appleton Laboratory.

Abstract

Randomized NLA methods have recently gained popularity because of their easy implementation, computational efficiency, and numerical robustness. We propose a randomized version of a well-established FEAST eigenvalue algorithm that enables computing the eigenvalues of the Hermitian matrix pencil $(\textbf{A},\textbf{B})$ located in the given real interval $\mathcal{I} \subset [\lambda_{min}, \lambda_{max}]$. In this talk, we will present deterministic as well as probabilistic error analysis of the accuracy of approximate eigenpair and subspaces obtained using the randomized FEAST algorithm. First, we derive bounds for the canonical angles between the exact and the approximate eigenspaces corresponding to the eigenvalues contained in the interval $\mathcal{I}$. Then, we present bounds for the accuracy of the eigenvalues and the corresponding eigenvectors. This part of the analysis is independent of the particular distribution of an initial subspace, therefore we denote it as deterministic. In the case of the starting guess being a Gaussian random matrix, we provide more informative, probabilistic error bounds. Finally, we will illustrate numerically the effectiveness of all the proposed error bounds.

 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 21 Oct 2021
14:00
Virtual

Randomized Methods for Sublinear Time Low-Rank Matrix Approximation

Cameron Musco
(University of Massachusetts)
Abstract

I will discuss recent advances in sampling methods for positive semidefinite (PSD) matrix approximation. In particular, I will show how new techniques based on recursive leverage score sampling yield a surprising algorithmic result: we give a method for computing a near optimal k-rank approximation to any n x n PSD matrix in O(n * k^2) time. When k is not too large, our algorithm runs in sublinear time -- i.e. it does not need to read all entries of the matrix. This result illustrates the ability of randomized methods to exploit the structure of PSD matrices and go well beyond what is possible with traditional algorithmic techniques. I will discuss a number of current research directions and open questions, focused on applications of randomized methods to sublinear time algorithms for structured matrix problems.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 14 Oct 2021
14:00
Virtual

What is the role of a neuron?

David Bau
(MIT)
Abstract

 

One of the great challenges of neural networks is to understand how they work.  For example: does a neuron encode a meaningful signal on its own?  Or is a neuron simply an undistinguished and arbitrary component of a feature vector space?  The tension between the neuron doctrine and the population coding hypothesis is one of the classical debates in neuroscience. It is a difficult debate to settle without an ability to monitor every individual neuron in the brain.

 

Within artificial neural networks we can examine every neuron. Beginning with the simple proposal that an individual neuron might represent one internal concept, we conduct studies relating deep network neurons to human-understandable concepts in a concrete, quantitative way: Which neurons? Which concepts? Are neurons more meaningful than an arbitrary feature basis? Do neurons play a causal role? We examine both simplified settings and state-of-the-art networks in which neurons learn how to represent meaningful objects within the data without explicit supervision.

 

Following this inquiry in computer vision leads us to insights about the computational structure of practical deep networks that enable several new applications, including semantic manipulation of objects in an image; understanding of the sparse logic of a classifier; and quick, selective editing of generalizable rules within a fully trained generative network.  It also presents an unanswered mathematical question: why is such disentanglement so pervasive?

 

In the talk, we challenge the notion that the internal calculations of a neural network must be hopelessly opaque. Instead, we propose to tear back the curtain and chart a path through the detailed structure of a deep network by which we can begin to understand its logic.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Primal-dual Newton methods, with application to viscous fluid dynamics

Georg Stadler
(New York University)
Abstract

I will discuss modified Newton methods for solving nonlinear systems of PDEs. These methods introduce additional variables before deriving the Newton linearization. These variables can then often be eliminated analytically before solving the Newton system, such that existing solvers can be adapted easily and the computational cost does not increase compared to a standard Newton method. The resulting algorithms yield favorable convergence properties. After illustrating the ideas on a simple example, I will show its application for the solution of incompressible Stokes flow problems with viscoplastic constitutive relation, where the additionally introduced variable is the stress tensor. These models are commonly used in earth science models. This is joint work with Johann Rudi (Argonne) and Melody Shih (NYU).

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 10 Jun 2021
14:00
Virtual

53 Matrix Factorizations, generalized Cartan, and Random Matrix Theory

Alan Edelman
(MIT)
Further Information

Joint seminar with the Random Matrix Theory group

Abstract

An insightful exercise might be to ask what is the most important idea in linear algebra. Our first answer would not be eigenvalues or linearity, it would be “matrix factorizations.” We will discuss a blueprint to generate 53 inter-related matrix factorizations (times 2) most of which appear to be new. The underlying mathematics may be traced back to Cartan (1927), Harish-Chandra (1956), and Flensted-Jensen (1978) . We will discuss the interesting history. One anecdote is that Eugene Wigner (1968) discovered factorizations such as the SVD in passing in a way that was buried and only eight authors have referenced that work. Ironically Wigner referenced Sigurður Helgason (1962) but Wigner did not recognize his results in Helgason's book. This work also extends upon and completes open problems posed by Mackey² & Tisseur (2003/2005).

Classical results of Random Matrix Theory concern exact formulas from the Hermite, Laguerre, Jacobi, and Circular distributions. Following an insight from Freeman Dyson (1970), Zirnbauer (1996) and Duenez (2004/5) linked some of these classical ensembles to Cartan's theory of Symmetric Spaces. One troubling fact is that symmetric spaces alone do not cover all of the Jacobi ensembles. We present a completed theory based on the generalized Cartan distribution. Furthermore, we show how the matrix factorization obtained by the generalized Cartan decomposition G=K₁AK₂ plays a crucial role in sampling algorithms and the derivation of the joint probability density of A.

Joint work with Sungwoo Jeong

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 03 Jun 2021
14:00
Virtual

Distributing points by minimizing energy for constructing approximation formulas with variable transformation

Ken'ichiro Tanaka
(University of Tokyo)
Abstract


In this talk, we present some effective methods for distributing points for approximating analytic functions with prescribed decay on a strip region including the real axis. Such functions appear when we use numerical methods with variable transformations. Typical examples of such methods are provided by single-exponential (SE) or double-exponential (DE) sinc formulas, in which variable transformations yield single- or double-exponential decay of functions on the real axis. It has been known that the formulas are nearly optimal on a Hardy space with a single- or double-exponential weight on the strip region, which is regarded as a space of transformed functions by the variable transformations.

Recently, we have proposed new approximation formulas that outperform the sinc formulas. For constructing them, we use an expression of the error norm (a.k.a. worst-case error) of an n-point interpolation operator in the weighted Hardy space. The expression is closely related to potential theory, and optimal points for interpolation correspond to an equilibrium measure of an energy functional with an external field. Since a discrete version of the energy becomes convex in the points under a mild condition about the weight, we can obtain good points with a standard optimization technique. Furthermore, with the aid of the formulation with the energy, we can find approximate distributions of the points theoretically.

[References]
- K. Tanaka, T. Okayama, M. Sugihara: Potential theoretic approach to design of accurate formulas for function approximation in symmetric weighted Hardy spaces, IMA Journal of Numerical Analysis Vol. 37 (2017), pp. 861-904.

- K. Tanaka, M. Sugihara: Design of accurate formulas for approximating functions in weighted Hardy spaces by discrete energy minimization, IMA Journal of Numerical Analysis Vol. 39 (2019), pp. 1957-1984.

- S. Hayakawa, K. Tanaka: Convergence analysis of approximation formulas for analytic functions via duality for potential energy minimization, arXiv:1906.03133.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 27 May 2021
14:00
Virtual

Algebraic multigrid methods for GPUs

Ulrike Meier Yang
(Lawrence Livermore National Laboratory)
Abstract

Computational science is facing several major challenges with rapidly changing highly complex heterogeneous computer architectures. To meet these challenges and yield fast and efficient performance, solvers need to be easily portable. Algebraic multigrid (AMG) methods have great potential to achieve good performance, since they have shown excellent numerical scalability for a variety of problems. However, their implementation on emerging computer architectures, which favor structure, presents new challenges. To face these difficulties, we have considered modularization of AMG, that is breaking AMG components into smaller kernels to improve portability as well as the development of new algorithms to replace components that are not suitable for GPUs. Another way to achieve performance on accelerators is to increase structure in algorithms. This talk will discuss new algorithmic developments, including a new class of interpolation operators that consists of simple matrix operations for unstructured AMG and efforts to develop a semi-structured AMG method.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 20 May 2021
14:00
Virtual

The bubble transform and the de Rham complex

Ragnar Winther
(University of Oslo)
Abstract

The bubble transform was a concept introduced by Richard Falk and me in a paper published in The Foundations of Computational Mathematics in 2016. From a simplicial mesh of a bounded domain in $R^n$ we constructed a map which decomposes scalar valued functions into a sum of local bubbles supported on appropriate macroelements.The construction is done without reference to any finite element space, but has the property that the standard continuous piecewise polynomial spaces are invariant. Furthermore, the transform is bounded in $L^2$ and $H^1$, and as a consequence we obtained a new tool for the understanding of finite element spaces of arbitrary polynomial order. The purpose of this talk is to review the previous results, and to discuss how to generalize the construction to differential forms such that the corresponding properties hold. In particular, the generalized transform will be defined such that it commutes with the exterior derivative.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 06 May 2021
14:00
Virtual

A proximal quasi-Newton trust-region method for nonsmooth regularized optimization

Dominique Orban
(École Polytechnique Montréal)
Abstract

We develop a trust-region method for minimizing the sum of a smooth term f and a nonsmooth term h, both of which can be nonconvex. Each iteration of our method minimizes a possibly nonconvex model of f+h in a trust region. The model coincides with f+h in value and subdifferential at the center. We establish global convergence to a first-order stationary point when f satisfies a smoothness condition that holds, in particular, when it has Lipschitz-continuous gradient, and h is proper and lower semi-continuous. The model of h is required to be proper, lower-semi-continuous and prox-bounded. Under these weak assumptions, we establish a worst-case O(1/ε^2) iteration complexity bound that matches the best known complexity bound of standard trust-region methods for smooth optimization. We detail a special instance in which we use a limited-memory quasi-Newton model of f and compute a step with the proximal gradient method, resulting in a practical proximal quasi-Newton method. We describe our Julia implementations and report numerical results on inverse problems from sparse optimization and signal processing. Our trust-region algorithm exhibits promising performance and compares favorably with linesearch proximal quasi-Newton methods based on convex models.

This is joint work with Aleksandr Aravkin and Robert Baraldi.

-

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 29 Apr 2021
14:00

Regularity, stability and passivity distances for dissipative Hamiltonian systems

Volker Mehrmann
(TU Berlin)
Abstract

Dissipative Hamiltonian systems are an important class of dynamical systems that arise in all areas of science and engineering. They are a special case of port-Hamiltonian control systems. When the system is linearized arround a stationary solution one gets a linear dissipative Hamiltonian typically differential-algebraic system. Despite the fact that the system looks unstructured at first sight, it has remarkable properties.  Stability and passivity are automatic, spectral structures for purely imaginary eigenvalues, eigenvalues at infinity, and even singular blocks in the Kronecker canonical form are very restricted and furthermore the structure leads to fast and efficient iterative solution methods for asociated linear systems. When port-Hamiltonian systems are subject to (structured) perturbations, then it is important to determine the minimal allowed perturbations so that these properties are not preserved. The computation of these structured distances to instability, non-passivity, or non-regularity, is typically a very hard non-convex optimization problem. However, in the context of dissipative Hamiltonian systems, the computation becomes much easier and can even be implemented efficiently for large scale problems in combination with model reduction techniques. We will discuss these distances and the computational methods and illustrate the results via an industrial problem.

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 11 Mar 2021
14:00
Virtual

Structured matrix approximations via tensor decompositions

Arvind Saibaba
(North Carolina State University)
Abstract

We provide a computational framework for approximating a class of structured matrices (e.g., block Toeplitz, block banded). Our approach has three steps: map the structured matrix to tensors, use tensor compression algorithms, and map the compressed tensors back to obtain two different matrix representations --- sum of Kronecker products and block low-rank format. The use of tensor decompositions enable us to uncover latent structure in the matrices and lead to computationally efficient algorithms. The resulting matrix approximations are memory efficient, easy to compute with, and preserve the error due to the tensor compression in the Frobenius norm. While our framework is quite general, we illustrate the potential of our method on structured matrices from three applications: system identification, space-time covariance matrices, and image deblurring.

Joint work with Misha Kilmer (Tufts University)

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 04 Mar 2021
14:00
Virtual

Optimization on manifolds: introduction and newsflashes

Pierre-Antoine Absil
(UC Louvain)
Abstract

This talk concerns applications of differential geometry in numerical optimization. They arise when the optimization problem can be formulated as finding an optimum of a real-valued cost function defined on a smooth nonlinear search space. Oftentimes, the search space is a "matrix manifold", in the sense that its points admit natural representations in the form of matrices. In most cases, the matrix manifold structure is due either to the presence of certain nonlinear constraints (such as orthogonality or rank constraints), or to invariance properties in the cost function that need to be factored out in order to obtain a nondegenerate optimization problem. Manifolds that come up in practical applications include the rotation group SO(3) (generation of rigid body motions from sample points), the set of fixed-rank matrices (low-rank models, e.g., in collaborative filtering), the set of 3x3 symmetric positive-definite matrices (interpolation of diffusion tensors), and the shape manifold (morphing).

In the recent years, the practical importance of optimization problems on manifolds has stimulated the development of geometric optimization algorithms that exploit the differential structure of the manifold search space. In this talk, we give an overview of geometric optimization algorithms and their applications, with an emphasis on the underlying geometric concepts and on the numerical efficiency of the algorithm implementations.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 25 Feb 2021
14:00
Virtual

Big data is low rank

Madeleine Udell
(Cornell University)
Abstract

Data scientists are often faced with the challenge of understanding a high dimensional data set organized as a table. These tables may have columns of different (sometimes, non-numeric) types, and often have many missing entries. In this talk, we discuss how to use low rank models to analyze these big messy data sets. Low rank models perform well --- indeed, suspiciously well — across a wide range of data science applications, including applications in social science, medicine, and machine learning. In this talk, we introduce the mathematics of low rank models, demonstrate a few surprising applications of low rank models in data science, and present a simple mathematical explanation for their effectiveness.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.