One of the main characterisations of word-hyperbolic groups is that they are the groups with a linear isoperimetric function. That is, for a compact 2-complex X, the hyperbolicity of its fundamental group is equivalent to the existence of a linear isoperimetric function for disc diagrams D -->X.

It is likewise known that hyperbolic groups have a linear annular isoperimetric function and a linear homological isoperimetric function. I will talk about these isoperimetric functions, and about a (previously unexplored) generalisation to all homotopy types of surface diagrams. This is joint work with Dani Wise.

# Past Junior Topology and Group Theory Seminar

An important property of a Gromov hyperbolic space is that every path that is locally a quasi-geodesic is globally a quasi-geodesic. A theorem of Gromov states that this is a characterization of hyperbolicity, which means that all the properties of hyperbolic spaces and groups can be traced back to this simple fact. In this talk we generalize this property by considering only Morse quasi-geodesics.

We show that not only does this allow us to consider a much larger class of examples, such as CAT(0) spaces, hierarchically hyperbolic spaces and fundamental groups of 3-manifolds, but also we can effortlessly generalize several results from the theory of hyperbolic groups that were previously unknown in this generality.

Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. It is a generalisation of an older invariant, the Teichmüller polynomial, defined by McMullen in 2002.

The aim of my talk is to demonstrate that veering triangulations provide a convenient setup for computations. More precisely, I will use fairly easy arguments to obtain a fairly strong statement which generalises the results of McMullen relating the Teichmüller polynomial to the Alexander polynomial.

I will not assume any prior knowledge on the Alexander polynomial, the Teichmüller polynomial or veering triangulations.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

I will introduce left-orderable groups and discuss constructions and examples of such groups. I will then motivate studying left-orders under the framework of formal languages and discuss some recent results.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Leighton's Theorem states that if two finite graphs have a common universal cover then they have a common finite cover. I will explore various ways in which this result can and can't be extended.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

I will discuss the notion of invariably generated groups, its importance, and some intuition. I will then present a construction of an invariably generated group that admits an index two subgroup that is not invariably generated. The construction answers questions of Wiegold and of Kantor-Lubotzky-Shalev. This is a joint work with Nir Lazarovich.

'Quasi-isometric rigidity' in group theory is the slogan for questions of the following nature: let A be some class of groups (e.g. finitely presented groups). Suppose an abstract group H is quasi-isometric to a group in A: does it imply that H is in A? Such statements link the coarse geometry of a group with its algebraic structure.

Much is known in the case A is some class of lattices in a given Lie group. I will present classical results and outline ideas in their proofs, emphasizing the geometric nature of the proofs. I will focus on one key ingredient, the quasi-flat rigidity, and discuss some geometric objects that come into play, such as neutered spaces, asymptotic cones and buildings. I will end the talk with recent developments and possible generalizations of these results and ideas.

Primitive elements are elements that are part of a basis for a free group. We present the classical Whitehead algorithm for the recognition of such elements, and discuss the ideas behind the proof. We also present a second algorithm, more recent and completely different in the approach.

I will explain what it means for a manifold to have an affine structure and give an introduction to Benzecri's theorem stating that a closed surface admits an affine structure if and only if its Euler characteristic vanishes. I will also talk about an algebraic-topological generalization, due to Milnor and Wood, that bounds the Euler class of a flat circle bundle. No prior familiarity with the concepts is necessary.