Forthcoming events in this series


Wed, 27 Nov 2024
16:00
L6

Floer Homology and Square Peg Problem

Soheil Azarpendar
(University of Oxford)
Abstract

In 1911, Otto Toeplitz posed the intriguing "Square Peg Problem," asking whether every Jordan curve admits an inscribed square. Despite over a century of study, the problem remains unsolved in its full generality. However, significant progress has been made over the years. In this talk, we explore recent advancements by Andrew Lobb and Joshua Greene, who approach the problem through the lens of Lagrangian Floer homology. Specifically, we outline a proof of their result: every smooth Jordan curve inscribes every rectangle up to similarity.

Wed, 20 Nov 2024
16:00
L6

Division rings in the service of group theory

Pablo Sánchez-Peralta
(Universidad Autonoma de Madrid)
Abstract

Embedding the group algebra into a division ring has proven to be a powerful tool for detecting structural properties of the group, especially in relation to its homology. In this talk, we will show how division rings can be used to identify residual properties of groups, one-ended groups, and coherent groups. We will place special emphasis on the class of free-by-cyclic groups to provide a clear, explicit exposition.

Wed, 13 Nov 2024
16:00
L6

The McCullough-Miller space for RAAGs

Peio Gale
(Public University of Navarre)
Abstract

The McCullough-Miller space is a contractible simplicial complex that admits an action of the pure symmetric (outer) automorphisms of the free group, with stabilizers that are free abelian. This space has been used to derive several cohomological properties of these groups, such as computing their cohomology ring and proving that they are duality groups. In this talk, we will generalize the construction to right-angled Artin groups (RAAGs), and use it to obtain some interesting cohomological results about the pure symmetric (outer) automorphisms of RAAGs.

Wed, 06 Nov 2024
16:00
L6

Presentations of Bordism Categories

Filippos Sytilidis
(University of Oxford)
Abstract

A topological quantum field theory (TQFT) is a functor from a category of bordisms to a category of vector spaces. Classifying low-dimensional TQFTs often involves considering presentations of bordism categories in terms of generators and relations. In this talk, we will introduce these concepts and outline a program for obtaining such presentations using Morse–Cerf theory.

Wed, 30 Oct 2024
16:00
L6

Counting subgroups of surface groups

Sophie Wright
(University of Bristol)
Abstract

The fundamental group of a hyperbolic surface has an infinite number of rank k subgroups. What does it mean, therefore, to pick a 'random' subgroup of this type? In this talk, I will introduce a method for counting subgroups and discuss how counting allows us to study the properties of a random subgroup and its associated cover.

Wed, 23 Oct 2024
16:00
L6

Coherence in Dimension 2

Sam Fisher
(University of Oxford)
Abstract

A group is coherent if all its finitely generated subgroups are finitely presented. Aside from some easy cases, it appears that coherence is a phenomenon that occurs only among groups of cohomological dimension 2. In this talk, we will give many examples of coherent and incoherent groups, discuss techniques to prove a group is coherent, and mention some open problems in the area.

Wed, 16 Oct 2024
16:00
L6

Solvability and Order Type for Finite Groups

Pawel Piwek
(University of Oxford)
Abstract

How much can the order type - the list of element orders (with multiplicities)—reveal about the structure of a finite group G? Can it tell us whether G is abelian, nilpotent? Can it always determine whether G is solvable? 

This last question was posed in 1987 by John G. Thompson and I answered it negatively this year. The search for a counterexample was quite a puzzle hunt! It involved turning the problem into linear algebra and solving an integer matrix equation Ax=b. This would be easy if not for the fact that the size of A was 100,000 by 10,000…

Wed, 12 Jun 2024

16:00 - 17:00
L6

The relation gap and relation lifting problems

Marco Linton
(University of Oxford)
Abstract

If \(F\) is a free group and \(F/N\) is a presentation of a group \(G\), there is a natural way to turn the abelianisation of \(N\) into a \(\mathbb ZG\)-module, known as the relation module of the presentation. The images of normal generators for \(N\) yield \(\mathbb ZG\)-module generators of the relation module, but 'lifting' \(\mathbb ZG\)-generators to normal generators cannot always be done by a result of Dunwoody. Nevertheless, it is an open problem, known as the relation gap problem, whether the relation module can have strictly fewer \(\mathbb ZG\)-module generators than \(N\) can have normal generators when \(G\) is finitely presented. In this talk I will survey what is known and what is not known about this problem and its variations and discuss some recent progress for groups with a cyclic relation module.

Wed, 05 Jun 2024

16:00 - 17:00
L6

Weighted \(\ell^2\) Betti numbers

Ana Isaković
(University of Cambridge)
Abstract

In 2006, Jan Dymara introduced the concept of weighted \(\ell^2\) Betti numbers as a method of computing regular \(\ell^2\) Betti numbers of buildings. This notion of dimension is measured by using Hecke algebras associated to the relevant Coxeter groups. I will briefly introduce buildings and then give a comparison between the regular \(\ell^2\) Betti numbers and the weighted ones.

Wed, 29 May 2024

16:00 - 17:00
L6

The Case for Knot Homologies

Maartje Wisse
(University College London)
Abstract

This talk will introduce Khovanov and Knot Floer Homology as tools for studying knots. I will then cover some applications to problems in knot theory including distinguishing embedded surfaces and how they can be used in the context of ribbon concordances. No prior knowledge of either will be necessary and lots of pictures are included.

Wed, 22 May 2024

16:00 - 17:00
L6

Finite quotients of Coxeter groups

Sam Hughes
(University of Oxford)
Abstract

We will try to solve the isomorphism problem amongst Coxeter groups by looking at finite quotients.  Some success is found in the classes of affine and right-angled Coxeter groups.  Based on joint work with Samuel Corson, Philip Moeller, and Olga Varghese.

Wed, 15 May 2024

16:00 - 17:00
L6

Out(Fₙ) and friends

Naomi Andrew
(University of Oxford)
Abstract

This talk will serve as an introduction to the outer automorphism group of a free group, its properties and the objects used to study it: especially train track maps (with various adjectives) and Culler--Vogtmann outer space. If time allows I will discuss recent work joint with Hillen, Lyman and Pfaff on stretch factors in rank 3, but the goal of the talk will be to introduce the topic well rather than to speedrun towards the theorem.

Wed, 08 May 2024

16:00 - 17:00
L6

The Morse local-to-global property

Davide Spriano
(University of Oxford)
Abstract

I'll talk about the Morse local-to-global property and try to convince you that is a good property. There are three reasons. Firstly, it is satisfied by many examples of interest. Secondly, it allows to prove many theorems. Thirdly, it sits nicely in the larger program of classifying groups up to quasi-isometry and it has connections with open questions.

Wed, 01 May 2024

16:00 - 17:00
L6

ℓ²-Betti numbers of RFRS groups

Sam Fisher
(University of Oxford)
Abstract

RFRS groups were introduced by Ian Agol in connection with virtual fibering of 3-manifolds. Notably, the class of RFRS groups contains all compact special groups, which are groups with particularly nice cocompact actions on cube complexes. In this talk, I will give an introduction to ℓ²-Betti numbers from an algebraic perspective and discuss what group theoretic properties we can conclude from the (non)vanishing of the ℓ²-Betti numbers of a RFRS group.

Wed, 24 Apr 2024
16:00
L6

Harmonic maps and virtual properties of mapping class groups

Ognjen Tošić
(University of Oxford)
Abstract

It is a standard result that mapping class groups of high genus do not surject the integers. This is easily shown by computing the abelianization of the mapping class group using a presentation. Once we pass to finite index subgroups, this becomes a conjecture of Ivanov. More generally, we can ask which groups admit epimorphisms from finite index subgroups of the mapping class group. In this talk, I will present a geometric approach to this question, using harmonic maps, and explain some recent results.

Wed, 06 Mar 2024

16:00 - 17:00
L6

Anosov Flows and Topology

Michael Schmalian
(University of Oxford)
Abstract

We will give a relaxed introduction to some of the most classical dynamical systems - Anosov flows. These flows were highly influential in the development of ideas which the audience might be more familiar with. For example, Anosov flows give rise to exponential group growth and taut foliations, both of which we will discuss. Finally, we will talk about some recent work obstructing Anosov flows and their combinatorial analogs - veering triangulations

Wed, 28 Feb 2024

16:00 - 17:00
L6

Revisiting property (T)

Ismael Morales
(University of Oxford)
Abstract

Property (T) was introduced by Kazhdan in the sixties to show that lattices in higher rank semisimple Lie groups are finitely generated. We will discuss some classical examples of groups that satisfy this property, with a particular focus on SL(3, R).

Wed, 21 Feb 2024
16:00
L6

Groups Acting Acylindrically on Trees

William Cohen
(University of Cambridge)
Abstract

It was shown by Balasubramanya that any acylindrically hyperbolic group (a natural generalisation of a hyperbolic group) must act acylindrically and non-elementarily on some quasi-tree. It is therefore sensible to ask to what extent this is true for trees, i.e. given an acylindrically hyperbolic group, does it admit a non-elementary acylindrical action on some simplicial tree? In this talk I will introduce the concepts of acylindrically hyperbolic and acylindrically arboreal groups and discuss some particularly interesting examples of acylindrically hyperbolic groups which do and do not act acylindrically on trees.

Wed, 14 Feb 2024

16:00 - 17:00
L6

One-ended graph braid groups and where to find them

Ruta Sliazkaite
(University of Warwick)
Abstract

Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.

Wed, 07 Feb 2024

16:00 - 17:00
L6

Relationships between hyperbolic and classic knot invatiants

Colin McCulloch
(University of Oxford)
Abstract

For a hyperbolic knot there are two types of invariants, the hyperbolic invariants coming from the geometric structure and the classical invariants coming from the topology or combinatorics. It has been observed in many different cases that these seemingly different types of invariants are in fact related. I will give examples of these relationships and discuss in particular a link by Stoimenow between the determinant and volume.  

Wed, 31 Jan 2024

16:00 - 17:00
L6

Distinguishing free-by-(finite cyclic) groups by their finite quotients

Paweł Piwek
(University of Oxford)
Abstract
Finitely generated free-by-(finite cyclic) groups turn out to be distinguished from each other by their finite quotients - and this is thanks to being very constrained by their finite subgroups and their centralisers. This has a consequence to distinguishing in the same way the free-by-cyclic groups with centre. This is joint work with Martin Bridson.
Wed, 17 Jan 2024

16:00 - 17:00
L6

Spectra of surfaces and MCG actions on random covers

Adam Klukowski
(University of Oxford)
Abstract

The Ivanov conjecture is equivalent to the statement that every covering map of surfaces has the so-called Putman-Wieland property. I will discuss my recent work with Vlad Marković, where we prove it for asymptotically all coverings as the degree grows. I will give some overview of our main tool: spectral geometry, which is related to objects like the heat kernel of a hyperbolic surface, or Cheeger connectivity constant.

Wed, 29 Nov 2023

16:00 - 17:00
L6

Combinatorial Hierarchical Hyperbolicity of the Mapping Class Group

Kaitlin Ragosta
(Brandeis University)
Abstract

The mapping class group of a surface has a hierarchical structure in which the geometry of the group can be seen by examining its action on the curve graph of every subsurface. This behavior was one of the motivating examples for a generalization of hyperbolicity called hierarchical hyperbolicity. Hierarchical hyperbolicity has many desirable consequences, but the definition is long, and proving that a group satisfies it is generally difficult. This difficulty motivated the introduction of a new condition called combinatorial hierarchical hyperbolicity by Behrstock, Hagen, Martin, and Sisto in 2020 which implies the original and is more straightforward to check. In recent work, Hagen, Mangioni, and Sisto developed a method for building a combinatorial hierarchically hyperbolic structure from a (sufficiently nice) hierarchically hyperbolic one. The goal of this talk is to describe their construction in the case of the mapping class group and illustrate some of the parallels between the combinatorial structure and the original. 

Wed, 22 Nov 2023

16:00 - 17:00
L6

3-manifold algorithms, representation theory, and the generalised Riemann hypothesis

Adele Jackson
(University of Oxford)
Abstract

You may be surprised to see the generalised Riemann hypothesis appear in algorithmic topology. For example, knottedness was originally shown to be in NP under the assumption of GRH.
Where does this condition come from? We will discuss this in the context of 3-sphere recognition, and examine why the approach fails for higher dimensions.

Wed, 15 Nov 2023

16:00 - 17:00
L6

Fáry-Milnor type theorems

Shaked Bader
(University of Oxford)
Abstract
In 1947 Karol Borsuk conjectured that if an ant is walking on a circle embedded piecewise linearly in 3 and is not dizzy (did not wind around itself twice) then the circle bounds a disc. He actually phrased it as follows: the total curvature of a knotted knot must be at least 4π
One may ask the same question with other spaces instead of 3.
We will present Milnor's proof of the classical conjecture, then define CAT(0) spaces and present some ideas from Stadler's proof in that setting and a more elementary proof in the setting of CAT(0) polygonal complexes.