Past Junior Topology and Group Theory Seminar

17 January 2018
16:00
Nicolaus Heuer
Abstract

Stable commutator length (scl) is a well established invariant of group elements g  (write scl(g)) and  has both geometric and algebraic meaning.

It is a phenomenon that many classes of non-positively curved groups have a gap in stable commutator length: For every non-trivial element g, scl(g) > C for some C>0. Such gaps may be found in hyperbolic groups, Baumslag-solitair groups, free products, Mapping class groups, etc. 
However, the exact size of this gap usually unknown, which is due to a lack of a good source of “quasimorphisms”.

In this talk I will construct a new source of quasimorphisms which yield optimal gaps and show that for Right-Angled Artin Groups and their subgroups the gap of stable commutator length is exactly 1/2. I will also show this gap for certain amalgamated free products.

  • Junior Topology and Group Theory Seminar
30 November 2017
16:00
Abstract

 In a recent paper Friedl, Zentner and Livingston asked when a sum of torus knots is concordant to an alternating knot. After a brief analysis of the problem in its full generality, I will describe some effective obstructions based on Floer type theories.

  • Junior Topology and Group Theory Seminar
25 October 2017
16:00
Elia Fioravanti
Abstract

If $G$ is an irreducible lattice in a semisimple Lie group, every action of $G$ on a tree has a global fixed point. I will give an elementary discussion of Y. Shalom's proof of this result, focussing on the case of $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$. Emphasis will be placed on the geometric aspects of the proof and on the importance of reduced cohomology, while other representation theoretic/functional analytic tools will be relegated to a couple of black boxes.

  • Junior Topology and Group Theory Seminar
18 October 2017
16:00
Abstract

I will present a gentle introduction to the theory of conformal dimension, focusing on its applications to the boundaries of hyperbolic groups, and the difficulty of classifying groups whose boundaries have conformal dimension 1.

  • Junior Topology and Group Theory Seminar
26 April 2017
16:00
Abstract
We give a construction of a boundary (the Morse boundary) which can be assigned to any proper geodesic metric space and which is rigid, in the sense that a quasi-isometry of spaces induces a homeomorphism of boundaries. To obtain a more workable invariant than the homeomorphism type, I will introduce the metric Morse boundary and discuss notions of capacity and conformal dimensions of the metric Morse boundary. I will then demonstrate that these dimensions give useful invariants of relatively hyperbolic and mapping class groups. This is joint work with Matthew Cordes (Technion).
  • Junior Topology and Group Theory Seminar
1 March 2017
16:00
Benjamin Barrett
Abstract
Inspired by the theory of JSJ decomposition for 3-manifolds, one can define the JSJ decomposition of a group as a maximal canonical way of cutting it up into simpler pieces using amalgamated products and HNN extensions. If the group in question has some sort of non-positive curvature property then one can define a boundary at infinity for the group, which captures its large scale geometry. The JSJ decomposition of the group is then reflected in the treelike structure of the boundary. In this talk I will discuss this connection in the case of hyperbolic groups and explain some of the ideas used in its proof by Brian Bowditch.
  • Junior Topology and Group Theory Seminar
15 February 2017
16:00
Alex Margolis
Abstract
Asymptotic dimension is a large-scale analogue of Lebesgue covering dimension. I will give a gentle introduction to asymptotic dimension, prove some basic propeties and give some applications to group theory. I will then define coarse homology and explain how when defined, virtual cohomological dimension gives a lower bound on asymptotic dimension.
  • Junior Topology and Group Theory Seminar

Pages