Forthcoming events in this series


Wed, 29 Oct 2025
16:00
L6

Hard Unknot Diagrams and Arc Presentations

Sam Ketchell
(Mathematical Institute University of Oxford )
Abstract
Abstract: There exist diagrams of the unknot that are "hard" in the sense that any sequence of Reidemeister moves rearranging them into the standard unknot diagram must at some point increase the crossing number beyond what it was originally. I will discuss how such diagrams can be produced and what is known and unknown about them.
Then, I will define and discuss the arc index of a knot, an invariant that behaves more nicely than the crossing number from this perspective, and in some other ways.
Wed, 18 Jun 2025
16:00
L6

Profinite Rigidity: Then and Now

Julian Wykowski
(University of Cambridge)
Abstract

Is it possible to tell the isomorphism type of an infinite group from its collection of finite quotients? This question, known as profinite rigidity, has deep roots in various areas of mathematics, ranging from arithmetic geometry to group theory. In this talk, I will introduce the question, its history and context. I will explain how profinite rigidity is studied using the machinery of profinite completions, including elementary proofs and counterexamples. Then I will outline some of the key results in the field, ranging from 1970 to the present day. Time permitting, I will elaborate on recent results of myself on the profinite rigidity of certain classes of solvable groups. 

Wed, 11 Jun 2025
16:00
L5

Finiteness properties of some automorphism groups of right-angled Artin groups

Gabriel Corrigan
(University of Glasgow)
Abstract

Right-angled Artin groups (RAAGs) can be viewed as a generalisation of free groups. To what extent, then, do the techniques used to study automorphisms of free groups generalise to the setting of RAAGs? One significant advance in this direction is the construction of 'untwisted Outer space' for RAAGs, a generalisation of the influential Culler-Vogtmann Outer space for free groups. A consequence of this construction is an upper bound on the virtual cohomological dimension of the 'untwisted subgroup' of outer automorphisms of a RAAG. However, this bound is sometimes larger than one expects; I present work showing that, in fact, it can be arbitrarily so, by forming a new complex as a deformation retraction of the untwisted Outer space. In a different direction, another subgroup of interest is that consisting of symmetric automorphisms. Generalising work in the free groups setting from 1989, I present an Outer space for the symmetric automorphism group of a RAAG. A consequence of the proof is a strong finiteness property for many other subgroups of the outer automorphism group.

Wed, 04 Jun 2025
16:00
L6

Even the Loch Ness monster deserves a curve graph

Filippo Baroni
(University of Oxford)
Abstract
Every topologist knows that a mug is a doughnut, but did you know that the Loch Ness monster is a baguette?
 
This talk is meant as a gentle introduction to the theory of big surfaces and their mapping class groups. This is a topic that has gained significant traction in the last few years, and is undergoing an exciting phase of explosive expansion.
 
We will start by giving lots of examples of surfaces of infinite type, working our way towards a general classification theorem. We will then introduce big mapping class groups, and outline some of their topological properties that are reminiscent of classical geometric group theory. Finally, following a programme proposed by Calegari in 2009,  we will investigate to what extent the classical theory of curve and arc graphs of finite-type surfaces generalises to the infinite-type setting. 
 
The level of prior required knowledge on the topic of big mapping class groups will be the same as that of the speaker one week before the talk — that is, none.
Wed, 28 May 2025
16:00
L6

Instanton homology for $\mathfrak{gl}_2$ webs and foams

Alex Epelde Blanco
(Harvard University)
Abstract

In the definition of the skein lasagna module of a $4$-manifold $X$, it is essential that the input TQFT be fully functorial for link cobordisms in $S^3 \times [0, 1]$. I will describe an approach to resolve existing sign ambiguities in Kronheimer and Mrowka's spectral sequence from Khovanov homology to singular instanton link homology. The goal is to obtain a theory that is fully functorial for link cobordisms in $S^3 \times [0,1]$, and where the $E_2$ page carries a canonical isomorphism to Khovanov-Rozansky $\mathfrak{gl}_2$ link homology. Possible applications include non-vanishing theorems for $4$-manifold Khovanov skein lasagna modules à la Ren-Willis.

Wed, 21 May 2025
16:00
L2

Fat minors and where to find them

Joseph MacManus
(University of Oxford)
Abstract

Recently, much attention has been paid to the intersection between coarse geometry and graph theory, giving rise to the fresh, exciting new field aptly known as ‘coarse graph theory’. One aspect of this area is the study of so-called ‘fat minors’, a large-scale analogue of the usual idea of a graph minor.

In this talk, I will introduce this area and motivate some interesting questions and conjectures. I will then sketch a proof that a finitely presented group is either virtually planar or contains arbitrarily ‘fat’ copies of every finite graph.

No prior knowledge or passion for graph theory will be assumed in this talk.

Wed, 14 May 2025
16:00
L6

Coarse cohomology of metric spaces and quasimorphisms

William Thomas
(University of Oxford)
Abstract

In this talk, we give an accessible introduction to the theory of coarse cohomology of metric spaces in the sense of Margolis, which we present in direct analogy with group cohomology for discrete groups. We explain how this yields the robust notion of coarse cohomological dimension (due to Margolis), which is a genuine quasi-isometry invariant of metric spaces generalising the cohomological dimension of groups when the latter is finite. We then give applications to geometric properties of quasimorphisms and motivate how such considerations might be useful in the setting of non-positively curved groups. This is joint reading/work with Paula Heim.

Wed, 07 May 2025
16:00
L3

Drawing Knots on Surfaces

Samuel Ketchell
(University of Oxford)
Abstract

There is a well-known class of knots, called torus knots, which are those that can be drawn on a "standardly embedded" torus (one that separates the 3-sphere into two solid tori). A fairly natural property of other knots to consider is the genus necessary for that knot to be drawn on a standardly embedded genus g surface. This knot invariant has been studied under the name "embeddability". The goal of this talk is to introduce the invariant, look at some upper and lower bounds in terms of other invariants, and examine its behavior under connected sum.

Wed, 30 Apr 2025
16:00
L3

Property (T) via Sum of Squares

Gargi Biswas
(University of Oxford)
Abstract

Property (T) is a rigidity property for group representations. It is generally very difficult to determine whether an infinite group has property (T) or not. It has long been known that a discrete group with a finite symmetric generating set has property (T) if and only if the group Laplacian is a positive element in the maximal group C*-algebra. However, this characterization has not been useful in addressing the question for automorphism groups of (non-abelian) free groups. In his 2016 paper, Ozawa proved that the phenomenon of 'positivity' of the group Laplacian is observed in the real group algebra, meaning that the Laplacian can be decomposed into a 'sum of squares'. This result transformed checking property (T) into a finite-dimensional condition that can be performed with the assistance of computers. In this talk, we will introduce property (T) and discuss Ozawa's result in detail.

Wed, 05 Mar 2025
16:00
L6

The BNSR Invariant of an Artin group and graph colorings.

Marcos Escartin-Ferrer
(Universidad Zaragoza)
Abstract

The BNSR Invariant is a classical geometric invariant that encodes the finite generation of all coabelian subgroups of a given finitely generated group. The aim of this talk is to present a conjecture about the structure of the BNSR invariant of an Artin group and to present a new family in which the conjecture is true in terms of graph colorings.

Wed, 26 Feb 2025
16:00
L6

Ultrasolid Modules and Deformation Theory

Sofía Marlasca Aparicio
(University of Oxford)
Abstract

We introduce ultrasolid modules, a variant of complete topological vector spaces. In this setting, we will prove some results in commutative algebra and apply them to the deformation of algebraic varieties in the language of derived algebraic geometry.

Wed, 19 Feb 2025
16:00
L6

Graph manifolds and their Thurston norm

Alessandro Cigna
(King's College London)
Abstract

A classical approach to studying the topology of a manifold is through the analysis of its submanifolds. The realm of 3-manifolds is particularly rich and diverse, and we aim to explore the complexity of surfaces within a given 3-manifold. After reviewing the fundamental definitions of the Thurston norm, we will present a constructive method for computing it on Seifert fibered manifolds and extend this approach to graph manifolds. Finally, we will outline which norms can be realized as the Thurston norm of some graph manifold and examine their key properties.

Wed, 12 Feb 2025
16:00
L6

Rank-one symmetric spaces and their quasiisometries

Paula Heim
(University of Oxford)
Abstract

The hyperbolic plane and its higher-dimensional analogues are well-known
objects. They belong to a larger class of spaces, called rank-one
symmetric spaces, which include not only the hyperbolic spaces but also
their complex and quaternionic counterparts, and the octonionic
hyperbolic plane. By a result of Pansu, two of these families exhibit
strong rigidity properties with respect to their self-quasiisometries:
any self-quasiisometry of a quaternionic hyperbolic space or the
octonionic hyperbolic plane is at uniformly bounded distance from an
isometry. The goal of this talk is to give an overview of the rank-one
symmetric spaces and the tools used to prove Pansu's rigidity theorem,
such as the subRiemannian structure of their visual boundaries and the
analysis of quasiconformal maps.

Wed, 05 Feb 2025
16:00
L6

Semi-regular tilings and the d-chromatic number of the hyperbolic plane

Luke Waite
(University of Southampton)
Abstract

Originally posed in the 1950s, the Hadwiger-Nelson problem interrogates the ‘chromatic number of the plane’ via an infinite unit-distance graph. This question remains open today, known only to be 5,6, or 7. We may ask the same question of the hyperbolic plane; there the lack of homogeneous dilations leads to unique behaviour for each length scale d. This variance leads to other questions: is the d-chromatic number finite for all d>0? How does the d-chromatic number behave as d increases/decreases? In this talk, I will provide a summary of existing methods and results, before discussing improved bounds through the consideration of semi-regular tilings of the hyperbolic plane.

Wed, 29 Jan 2025
16:00
L6

Introduction to Congruence Subgroup Property

Adam Klukowski
(University of Oxford)
Abstract

Congruence Subgroup Property is a characterisation of finite-index subgroups of automorphism groups. It first arose from the study of subgroups of linear groups. In this talk, I will show a few examples where it holds and where it fails, and give an overview of what is known about the family $SL_n\mathbb{Z}$, $Out(F_n)$, $MCG(\Sigma)$. Then I will describe some related results in the case of Mapping Class Groups, and explain their relation to profinite rigidity of 3-manifolds.

Wed, 22 Jan 2025
16:00
L6

Skein Lasagna Modules

Colin McCulloch
(University of Oxford)
Abstract

Donaldson proved that there are pairs of 4-manifolds that are homeomorphic but not diffeomorphic, a phenomenon that does not appear for any lower dimensional manifolds. Until recently, proving this for compact manifolds has required smooth 4-manifold invariants coming from gauge theory. In this talk, we will give an introduction to an exciting new smooth 4-manifold invariant of Morrison Walker and Wedich, called a skein lasagna module that does not rely on gauge theory. Further, this talk will not assume any knowledge of 4-manifold topology.

Wed, 04 Dec 2024
16:00
L6

Tambara-Yamagami Fusion Categories

Adrià Marín-Salvador
(University of Oxford)
Abstract

In this talk, I will introduce fusion categories as categorical versions of finite rings. We will discuss some examples which may already be familiar, like the category of representations of a finite group and the category of vector spaces graded over a finite group. Then, we will define Tambara-Yamagami categories, which are a certain type of fusion categories which have one simple object which is non-invertible. I will provide the classification results of Tambara and Yamagami on these categories and give some small examples. Time permitting, I will discuss current work in progress on how to generalize Tambara-Yamagami fusion categories to locally compact groups. 

This talk will not assume familiarity with category theory further than the definition of a category and a functor.

Wed, 27 Nov 2024
16:00
L6

Floer Homology and Square Peg Problem

Soheil Azarpendar
(University of Oxford)
Abstract

In 1911, Otto Toeplitz posed the intriguing "Square Peg Problem," asking whether every Jordan curve admits an inscribed square. Despite over a century of study, the problem remains unsolved in its full generality. However, significant progress has been made over the years. In this talk, we explore recent advancements by Andrew Lobb and Joshua Greene, who approach the problem through the lens of Lagrangian Floer homology. Specifically, we outline a proof of their result: every smooth Jordan curve inscribes every rectangle up to similarity.

Wed, 20 Nov 2024
16:00
L6

Division rings in the service of group theory

Pablo Sánchez-Peralta
(Universidad Autonoma de Madrid)
Abstract

Embedding the group algebra into a division ring has proven to be a powerful tool for detecting structural properties of the group, especially in relation to its homology. In this talk, we will show how division rings can be used to identify residual properties of groups, one-ended groups, and coherent groups. We will place special emphasis on the class of free-by-cyclic groups to provide a clear, explicit exposition.

Wed, 13 Nov 2024
16:00
L6

The McCullough-Miller space for RAAGs

Peio Gale
(Public University of Navarre)
Abstract

The McCullough-Miller space is a contractible simplicial complex that admits an action of the pure symmetric (outer) automorphisms of the free group, with stabilizers that are free abelian. This space has been used to derive several cohomological properties of these groups, such as computing their cohomology ring and proving that they are duality groups. In this talk, we will generalize the construction to right-angled Artin groups (RAAGs), and use it to obtain some interesting cohomological results about the pure symmetric (outer) automorphisms of RAAGs.

Wed, 06 Nov 2024
16:00
L6

Presentations of Bordism Categories

Filippos Sytilidis
(University of Oxford)
Abstract

A topological quantum field theory (TQFT) is a functor from a category of bordisms to a category of vector spaces. Classifying low-dimensional TQFTs often involves considering presentations of bordism categories in terms of generators and relations. In this talk, we will introduce these concepts and outline a program for obtaining such presentations using Morse–Cerf theory.

Wed, 30 Oct 2024
16:00
L6

Counting subgroups of surface groups

Sophie Wright
(University of Bristol)
Abstract

The fundamental group of a hyperbolic surface has an infinite number of rank k subgroups. What does it mean, therefore, to pick a 'random' subgroup of this type? In this talk, I will introduce a method for counting subgroups and discuss how counting allows us to study the properties of a random subgroup and its associated cover.

Wed, 23 Oct 2024
16:00
L6

Coherence in Dimension 2

Sam Fisher
(University of Oxford)
Abstract

A group is coherent if all its finitely generated subgroups are finitely presented. Aside from some easy cases, it appears that coherence is a phenomenon that occurs only among groups of cohomological dimension 2. In this talk, we will give many examples of coherent and incoherent groups, discuss techniques to prove a group is coherent, and mention some open problems in the area.

Wed, 16 Oct 2024
16:00
L6

Solvability and Order Type for Finite Groups

Pawel Piwek
(University of Oxford)
Abstract

How much can the order type - the list of element orders (with multiplicities)—reveal about the structure of a finite group G? Can it tell us whether G is abelian, nilpotent? Can it always determine whether G is solvable? 

This last question was posed in 1987 by John G. Thompson and I answered it negatively this year. The search for a counterexample was quite a puzzle hunt! It involved turning the problem into linear algebra and solving an integer matrix equation Ax=b. This would be easy if not for the fact that the size of A was 100,000 by 10,000…

Wed, 12 Jun 2024

16:00 - 17:00
L6

The relation gap and relation lifting problems

Marco Linton
(University of Oxford)
Abstract

If \(F\) is a free group and \(F/N\) is a presentation of a group \(G\), there is a natural way to turn the abelianisation of \(N\) into a \(\mathbb ZG\)-module, known as the relation module of the presentation. The images of normal generators for \(N\) yield \(\mathbb ZG\)-module generators of the relation module, but 'lifting' \(\mathbb ZG\)-generators to normal generators cannot always be done by a result of Dunwoody. Nevertheless, it is an open problem, known as the relation gap problem, whether the relation module can have strictly fewer \(\mathbb ZG\)-module generators than \(N\) can have normal generators when \(G\) is finitely presented. In this talk I will survey what is known and what is not known about this problem and its variations and discuss some recent progress for groups with a cyclic relation module.

Wed, 05 Jun 2024

16:00 - 17:00
L6

Weighted \(\ell^2\) Betti numbers

Ana Isaković
(University of Cambridge)
Abstract

In 2006, Jan Dymara introduced the concept of weighted \(\ell^2\) Betti numbers as a method of computing regular \(\ell^2\) Betti numbers of buildings. This notion of dimension is measured by using Hecke algebras associated to the relevant Coxeter groups. I will briefly introduce buildings and then give a comparison between the regular \(\ell^2\) Betti numbers and the weighted ones.

Wed, 29 May 2024

16:00 - 17:00
L6

The Case for Knot Homologies

Maartje Wisse
(University College London)
Abstract

This talk will introduce Khovanov and Knot Floer Homology as tools for studying knots. I will then cover some applications to problems in knot theory including distinguishing embedded surfaces and how they can be used in the context of ribbon concordances. No prior knowledge of either will be necessary and lots of pictures are included.

Wed, 22 May 2024

16:00 - 17:00
L6

Finite quotients of Coxeter groups

Sam Hughes
(University of Oxford)
Abstract

We will try to solve the isomorphism problem amongst Coxeter groups by looking at finite quotients.  Some success is found in the classes of affine and right-angled Coxeter groups.  Based on joint work with Samuel Corson, Philip Moeller, and Olga Varghese.

Wed, 15 May 2024

16:00 - 17:00
L6

Out(Fₙ) and friends

Naomi Andrew
(University of Oxford)
Abstract

This talk will serve as an introduction to the outer automorphism group of a free group, its properties and the objects used to study it: especially train track maps (with various adjectives) and Culler--Vogtmann outer space. If time allows I will discuss recent work joint with Hillen, Lyman and Pfaff on stretch factors in rank 3, but the goal of the talk will be to introduce the topic well rather than to speedrun towards the theorem.

Wed, 08 May 2024

16:00 - 17:00
L6

The Morse local-to-global property

Davide Spriano
(University of Oxford)
Abstract

I'll talk about the Morse local-to-global property and try to convince you that is a good property. There are three reasons. Firstly, it is satisfied by many examples of interest. Secondly, it allows to prove many theorems. Thirdly, it sits nicely in the larger program of classifying groups up to quasi-isometry and it has connections with open questions.

Wed, 01 May 2024

16:00 - 17:00
L6

ℓ²-Betti numbers of RFRS groups

Sam Fisher
(University of Oxford)
Abstract

RFRS groups were introduced by Ian Agol in connection with virtual fibering of 3-manifolds. Notably, the class of RFRS groups contains all compact special groups, which are groups with particularly nice cocompact actions on cube complexes. In this talk, I will give an introduction to ℓ²-Betti numbers from an algebraic perspective and discuss what group theoretic properties we can conclude from the (non)vanishing of the ℓ²-Betti numbers of a RFRS group.

Wed, 24 Apr 2024
16:00
L6

Harmonic maps and virtual properties of mapping class groups

Ognjen Tošić
(University of Oxford)
Abstract

It is a standard result that mapping class groups of high genus do not surject the integers. This is easily shown by computing the abelianization of the mapping class group using a presentation. Once we pass to finite index subgroups, this becomes a conjecture of Ivanov. More generally, we can ask which groups admit epimorphisms from finite index subgroups of the mapping class group. In this talk, I will present a geometric approach to this question, using harmonic maps, and explain some recent results.

Wed, 06 Mar 2024

16:00 - 17:00
L6

Anosov Flows and Topology

Michael Schmalian
(University of Oxford)
Abstract

We will give a relaxed introduction to some of the most classical dynamical systems - Anosov flows. These flows were highly influential in the development of ideas which the audience might be more familiar with. For example, Anosov flows give rise to exponential group growth and taut foliations, both of which we will discuss. Finally, we will talk about some recent work obstructing Anosov flows and their combinatorial analogs - veering triangulations

Wed, 28 Feb 2024

16:00 - 17:00
L6

Revisiting property (T)

Ismael Morales
(University of Oxford)
Abstract

Property (T) was introduced by Kazhdan in the sixties to show that lattices in higher rank semisimple Lie groups are finitely generated. We will discuss some classical examples of groups that satisfy this property, with a particular focus on SL(3, R).

Wed, 21 Feb 2024
16:00
L6

Groups Acting Acylindrically on Trees

William Cohen
(University of Cambridge)
Abstract

It was shown by Balasubramanya that any acylindrically hyperbolic group (a natural generalisation of a hyperbolic group) must act acylindrically and non-elementarily on some quasi-tree. It is therefore sensible to ask to what extent this is true for trees, i.e. given an acylindrically hyperbolic group, does it admit a non-elementary acylindrical action on some simplicial tree? In this talk I will introduce the concepts of acylindrically hyperbolic and acylindrically arboreal groups and discuss some particularly interesting examples of acylindrically hyperbolic groups which do and do not act acylindrically on trees.

Wed, 14 Feb 2024

16:00 - 17:00
L6

One-ended graph braid groups and where to find them

Ruta Sliazkaite
(University of Warwick)
Abstract

Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.

Wed, 07 Feb 2024

16:00 - 17:00
L6

Relationships between hyperbolic and classic knot invatiants

Colin McCulloch
(University of Oxford)
Abstract

For a hyperbolic knot there are two types of invariants, the hyperbolic invariants coming from the geometric structure and the classical invariants coming from the topology or combinatorics. It has been observed in many different cases that these seemingly different types of invariants are in fact related. I will give examples of these relationships and discuss in particular a link by Stoimenow between the determinant and volume.  

Wed, 31 Jan 2024

16:00 - 17:00
L6

Distinguishing free-by-(finite cyclic) groups by their finite quotients

Paweł Piwek
(University of Oxford)
Abstract
Finitely generated free-by-(finite cyclic) groups turn out to be distinguished from each other by their finite quotients - and this is thanks to being very constrained by their finite subgroups and their centralisers. This has a consequence to distinguishing in the same way the free-by-cyclic groups with centre. This is joint work with Martin Bridson.
Wed, 17 Jan 2024

16:00 - 17:00
L6

Spectra of surfaces and MCG actions on random covers

Adam Klukowski
(University of Oxford)
Abstract

The Ivanov conjecture is equivalent to the statement that every covering map of surfaces has the so-called Putman-Wieland property. I will discuss my recent work with Vlad Marković, where we prove it for asymptotically all coverings as the degree grows. I will give some overview of our main tool: spectral geometry, which is related to objects like the heat kernel of a hyperbolic surface, or Cheeger connectivity constant.

Wed, 29 Nov 2023

16:00 - 17:00
L6

Combinatorial Hierarchical Hyperbolicity of the Mapping Class Group

Kaitlin Ragosta
(Brandeis University)
Abstract

The mapping class group of a surface has a hierarchical structure in which the geometry of the group can be seen by examining its action on the curve graph of every subsurface. This behavior was one of the motivating examples for a generalization of hyperbolicity called hierarchical hyperbolicity. Hierarchical hyperbolicity has many desirable consequences, but the definition is long, and proving that a group satisfies it is generally difficult. This difficulty motivated the introduction of a new condition called combinatorial hierarchical hyperbolicity by Behrstock, Hagen, Martin, and Sisto in 2020 which implies the original and is more straightforward to check. In recent work, Hagen, Mangioni, and Sisto developed a method for building a combinatorial hierarchically hyperbolic structure from a (sufficiently nice) hierarchically hyperbolic one. The goal of this talk is to describe their construction in the case of the mapping class group and illustrate some of the parallels between the combinatorial structure and the original. 

Wed, 22 Nov 2023

16:00 - 17:00
L6

3-manifold algorithms, representation theory, and the generalised Riemann hypothesis

Adele Jackson
(University of Oxford)
Abstract

You may be surprised to see the generalised Riemann hypothesis appear in algorithmic topology. For example, knottedness was originally shown to be in NP under the assumption of GRH.
Where does this condition come from? We will discuss this in the context of 3-sphere recognition, and examine why the approach fails for higher dimensions.

Wed, 15 Nov 2023

16:00 - 17:00
L6

Fáry-Milnor type theorems

Shaked Bader
(University of Oxford)
Abstract
In 1947 Karol Borsuk conjectured that if an ant is walking on a circle embedded piecewise linearly in 3 and is not dizzy (did not wind around itself twice) then the circle bounds a disc. He actually phrased it as follows: the total curvature of a knotted knot must be at least 4π
One may ask the same question with other spaces instead of 3.
We will present Milnor's proof of the classical conjecture, then define CAT(0) spaces and present some ideas from Stadler's proof in that setting and a more elementary proof in the setting of CAT(0) polygonal complexes.
 
Wed, 08 Nov 2023

16:00 - 17:00
L6

Navigating the curve graph with train tracks

Filippo Baroni
(University of Oxford)
Abstract

It is a truth universally acknowledged, that an infinite group in possession of a good algebraic structure, must be in want of a hyperbolic space to act on. For the mapping class group of a surface, one of the most popular choices is the curve graph. This is a combinatorial object, built from curves on the surface and intersection patterns between them.
Hyperbolicity of the curve graph was proved by Masur and Minsky in a celebrated paper in 1999. In the same article, they showed how the geometry of the action on this graph reflects dynamical/topological properties of the mapping class group; in particular, loxodromic elements are precisely the pseudo-Anosov mapping classes.
In light of this, one would like to better understand distances in the curve graph. The graph is locally infinite, and finding a shortest path between two vertices is highly non-trivial. In this talk, we will see how to use the machinery of train tracks to overcome this issue and compute (approximate) distances in the curve graph. If time permits -- which, somehow, it never does -- we will also analyse this construction from an algorithmic perspective.

Wed, 01 Nov 2023

16:00 - 17:00
L6

Topology and dynamics on the space of subgroups

Pénélope Azuelos
(University of Bristol)
Abstract

The space of subgroups of a countable group is a compact topological space which encodes many of the properties of its non-free actions. We will discuss some approaches to studying the Cantor-Bendixson decomposition of this space in the context of hyperbolic groups and groups which act (nicely) on trees. We will also give some conditions under which the conjugation action on the perfect kernel is highly topologically transitive and see how this can be applied to find new examples of groups (including all virtually compact special groups) which admit faithful transitive amenable actions. This is joint work with Damien Gaboriau.

Wed, 25 Oct 2023

16:00 - 17:00
L6

Alternating knots and branched double covers

Soheil Azarpendar
(University of Oxford)
Abstract

An old and challenging conjecture proposed by R.H. Fox in 1962 states that the absolute values of the coefficients of the Alexander polynomial of an alternating knot are trapezoidal i.e. strictly increase, possibly plateau, then strictly decrease. We give a survey of the known results and use them to motivate the study of branched double covers. The second part of the talk focuses on the properties of the branched double covers of alternating knots.

Wed, 18 Oct 2023

16:00 - 17:00
L6

Fibring in manifolds and groups

Monika Kudlinska
(University of Oxford)
Abstract

Algebraic fibring is the group-theoretic analogue of fibration over the circle for manifolds. Generalising the work of Agol on hyperbolic 3-manifolds, Kielak showed that many groups virtually fibre. In this talk we will discuss the geometry of groups which fibre, with some fun applications to Poincare duality groups - groups whose homology and cohomology invariants satisfy a Poincare-Lefschetz type duality, like those of manifolds - as well as to exotic subgroups of Gromov hyperbolic groups. No prior knowledge of these topics will be assumed.

Disclaimer: This talk will contain many manifolds.

Wed, 11 Oct 2023
16:00
L6

Reasons to be accessible

Joseph MacManus
(University of Oxford)
Abstract

If some structure, mathematical or otherwise, is giving you grief, then often the first thing to do is to attempt to break the offending object down into (finitely many) simpler pieces.

In group theory, when we speak of questions of *accessibility* we are referring to the ability to achieve precisely this. The idea of an 'accessible group' was first coined by Terry Wall in the 70s, and since then has left quite a mark on our field (and others). In this talk I will introduce the toolbox required to study accessibility, and walk you and your groups through some reasons to be accessible.

Wed, 14 Jun 2023
16:00
L6

Asymptotic dimension of groups

Panagiotis Tselekidis
(University of Oxford)
Abstract

Asymptotic dimension was introduced by Gromov as an invariant of finitely generated groups. It can be shown that if two metric spaces are quasi-isometric then they have the same asymptotic dimension. In 1998, the asymptotic dimension achieved particular prominence in geometric group theory after a paper of Guoliang Yu, which proved the Novikov conjecture for groups with finite asymptotic dimension. Unfortunately, not all finitely generated groups have finite asymptotic dimension. 

In this talk, we will introduce some basic tools to compute the asymptotic dimension of groups. We will also find upper bounds for the asymptotic dimension of a few well-known classes of finitely generated groups, such as hyperbolic groups, and if time permits, we will see why one-relator groups have asymptotic dimension at most two.

Wed, 07 Jun 2023
16:00
L6

TBC

TBC
Wed, 31 May 2023
16:00
L6

Accessibility, QI-rigidity, and planar graphs

Joseph MacManus
(University of Oxford)
Abstract

A common pastime of geometric group theorists is to try and derive algebraic information about a group from the geometric properties of its Cayley graphs. One of the most classical demonstrations of this can be seen in the work of Maschke (1896) in characterising those finite groups with planar Cayley graphs. Since then, much work has been done on this topic. In this talk, I will attempt to survey some results in this area, and show that the class group with planar Cayley graphs is QI-rigid.