Forthcoming events in this series
16:30
KPP traveling waves in the half-space
Abstract
Reaction–diffusion equations are widely used to model spatial propagation, and constant-speed "traveling waves" play a central role in their dynamics. These waves are well understood in "essentially 1D" domains like cylinders, but much less is known about waves with noncompact transverse structure. In this direction, we will consider traveling waves of the KPP reaction–diffusion equation in the Dirichlet half-space. We will see that minimal-speed waves are unique (unlike faster waves) and exhibit curious asymptotics. The arguments rest on potential theory, the maximum principle, and a powerful connection with the probabilistic system known as branching Brownian motion.
This is joint work with Julien Berestycki, Yujin H. Kim, and Bastien Mallein.
In Search of Euler Equilibria Via the MR Equations
Abstract
The subject of “geometric” fluid dynamics flourished following the seminal work of VI.
Arnold in the 1960s. A famous paper was published in 1970 by David Ebin and Jerrold
Marsden, who used the manifold structure of certain groups of diffeomorphisms to obtain
sharp existence and uniqueness results for the classical equations of fluid dynamics. Of
particular importance are the fixed points of the underlying dynamical system and the
“accessibility” of these Euler equilibria. In 1985 Keith Moffatt introduced a mechanism
for reaching these equilibria not through the Euler vortex dynamics itself but via a
topology-preserving diffusion process called “Magnetic Relaxation”. In this talk, we will
discuss some recent results for Moffatt’s MR equations which are mathematically
challenging not only because they are active vector equations but also because they have
a cubic nonlinearity.
This is joint work with Rajendra Beckie, Adam Larios, and Vlad Vicol.
Scaling Optimal Transport for High dimensional Learning
Please note a different room and that there are two pde seminars on Monday of W5 (May 22).
Abstract
Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport".
16:30
Optimal mass transport and sharp Sobolev inequalities
Please note a different room and that there are two pde seminars on Monday of W5 (May 22).
Abstract
Optimal mass transport is a versatile tool that can be used to prove various geometric and functional inequalities. In this talk we focus on the class of Sobolev inequalities.
In the first part of the talk I present the main idea of this method, based on the work of Cordero-Erausquin, Nazaret and Villani (2004).
The second part of the talk is devoted to the joint work with Ch. Gutierrez and A. Kristály about Sobolev inequalities with weights.
16:30
Lord Rayleigh’s conjecture for clamped plates in curved spaces
Abstract
The talk is focused on the clamped plate problem, initially formulated by Lord Rayleigh in 1877, and solved by M. Ashbaugh & R. Benguria (Duke Math. J., 1995) and N. Nadirashvili (Arch. Ration. Mech. Anal., 1995) in 2 and 3 dimensional euclidean spaces. We consider the same problem on both negatively and positively curved spaces, and provide various answers depending on the curvature, dimension and the width/size of the clamped plate.
Quasiconvexity and nonlinear Elasticity
Abstract
Quasiconvexity is the fundamental existence condition for variational problems, yet it is poorly understood. Two outstanding problems remain:
- 1) does rank-one convexity, a simple necessary condition, imply quasiconvexity in two dimensions?
- 2) can one prove existence theorems for quasiconvex energies in the context of nonlinear Elasticity?
In this talk we show that both problems have a positive answer in a special class of isotropic energies. Our proof combines complex analysis with the theory of gradient Young measures. On the way to the main result, we establish quasiconvexity inequalities for the Burkholder function which yield, in particular, many sharp higher integrability results.
The talk is based on joint work with Kari Astala, Daniel Faraco, Aleksis Koski and Jan Kristensen.
17:30
Convexity and Uniqueness in the Calculus of Variations
Please note there are two pde seminars on Monday of W2 (May 1st).
Abstract
16:30
On the stability of multi-dimensional rarefaction waves
Please note there are two pde seminars on Monday of W2 (May 1st).
Abstract
In his pioneering work in 1860, Riemann proposed the Riemann problem and solved it for isentropic gas in terms of shocks and rarefaction waves. It eventually became the foundation of the theory of one-dimension conservation laws developed in the 20th century. We prove the non-nonlinear structural stability of the Riemann problem for multi-dimensional isentropic Euler equations in the regime of rarefaction waves. This is a joint work with Tian-Wen Luo.
16:30
Global stability of Kaluza-Klein spacetimes
Abstract
Spacetimes formed from the cartesian product of Minkowski space and a flat torus play an important role as toy models for theories of supergravity and string theory. In this talk I will discuss an upcoming work with Huneau and Stingo showing the nonlinear stability of such a Kaluza-Klein spacetime. The result is also connected to a claim of Witten.
16:30
Optimality problems in function spaces
Abstract
In mathematical modelling, data and solutions are often represented as measurable functions, and their quality is being captured by their membership to a certain function space. One of the core questions arising in applications of this approach is the comparison of the quality of the data and that of the solution. A particular attention is being paid to optimality of the results obtained. A delicate choice of scales of suitable function spaces is required in order to balance the expressivity (the ability to capture fine mathematical properties of the model) and the accessibility (the level of its technical difficulty) for a practical use. We will give an overview of the research area which grew out of these questions and survey recent results obtained in this direction as well as challenging open questions. We will describe a development of a powerful method based on the so-called reduction principles and demonstrate its use on specific problems including the continuity of Sobolev embeddings or boundedness of pivotal integral operators such as the Hardy - Littlewood maximal operator and the Laplace transform.
16:30
Alexandrov immersed mean curvature flow
Abstract
16:30
***CANCELLED*** Homogenization and multi-phase systems
Abstract
***CANCELLED*** In this talk, I will discuss recent results related to the mathematical justification of PDEs which model multi-phase flows at the macroscopic level from mesoscopic descriptions with jump conditions at interfaces. We will also present interesting and difficult open problems.
16:30
Singularities along the Lagrangian mean curvature flow of surfaces
Abstract
16:30
Improved bounds for the fundamental solution of the heat equation in exterior domains
Abstract
We use entropy methods to show that the heat equation with Dirichlet boundary conditions on the complement of a compact set in R^d shows a self-similar behaviour much like the usual heat equation on R^d, once we account for the loss of mass due to the boundary. Giving good lower bounds for the fundamental solution on these sets is surprisingly a relatively recent result, and we find some improvements using some advances in logarithmic Sobolev inequalities. In particular, we are able to give optimal asymptotic bounds for large times for the fundamental solution with an explicit approach rate in dimensions larger than 2, and some new bounds in dimension 2.
This is a work in collaboration with Alejandro Gárriz and Fernando Quirós.
16:30
Analysis of multi-phase PDE models: from fluids to crowds
Abstract
This talk will be devoted to our recent developments in the analysis of emerging models for complex flows. I will start from presenting a general PDE system describing two-fluid flows, for which we prove existence of global in time weak solutions for arbitrary large initial data. I will explain where the famous approach of Lions developed for the compressible Navier-Stokes equations fails and how to use a more direct, weighted Kolmogorov criterion to prove compactness of approximating sequences of solutions. Through a formal limit, I will link the two-fluid model to the constrained two-phase models. Applications of such models include modelling of granular flows, crowd motion, or shallow water flow through a channel. The last part of my talk will focus on the rigorous derivation of these models from the compressible Navier-Stokes equations via the vanishing singular pressure or viscosity limit.
16:30
Financial illiquidity, Lévy processes and HJB equations
Abstract
I will present a model for an optimal portfolio allocation and consumption problem for a portfolio composed of a risk-free bond and two illiquid assets. Two forms of illiquidity are presented, both illiquidities based on Lévy processes. The goal of the investor is to maximise a certain utility function, and the optimal utility is found as a solution of a nonlinear PIDE of the Hamilton-Jacobi-Bellman kind.
16:30
Obstruction-free gluing for the Einstein equations
Abstract
We present a new approach to the gluing problem in General Relativity, that is, the problem of matching two solutions of the Einstein equations along a spacelike or characteristic (null) hypersurface. In contrast to previous constructions, the new perspective actively utilizes the nonlinearity of the constraint equations. As a result, we are able to remove the 10-dimensional spaces of obstructions to gluing present in the literature. As application, we show that any asymptotically flat spacelike initial data set can be glued to Schwarzschild initial data of sufficiently large mass. This is joint work with I. Rodnianski.
16:30
Hyperbolic Cauchy problems with multiplicities
Abstract
In this talk I will discuss well-posedness of hyperbolic Cauchy problems with multiplicities and the role played by the lower order terms (Levi conditions). I will present results obtained in collaboration with Christian Jäh (Göttingen) and Michael Ruzhansky (QMUL/Ghent) on higher order equations and non-diagonalisable systems.
16:30
Schauder estimates for any taste
Abstract
So-called Schauder estimates are a standard tool in the analysis of linear elliptic and parabolic PDE. They have been originally obtained by Hopf (1929, interior case), and by Schauder and Caccioppoli (1934, global estimates). The nonlinear case is a more recent achievement from the ’80s (Giaquinta & Giusti, Ivert, Lieberman, Manfredi). All these classical results hold in the uniformly elliptic framework. I will present the solution to the longstanding problem, open since the ‘70s, of proving estimates of such kind in the nonuniformly elliptic setting. I will also cover the case of nondifferentiable functionals and provide a complete regularity theory for a new double phase model. From joint work with Giuseppe Mingione (University of Parma).
16:30
A unified theory of lower Ricci curvature bounds for Riemannian and sub-Riemannian structures
Abstract
The synthetic theory of Ricci curvature lower bounds introduced more than 15 years ago by Lott-Sturm-Villani has been largely succesful in describing the geometry of metric measure spaces. However, this theory fails to include sub-Riemannian manifolds (an important class of metric spaces, the simplest example being the so-called Heisenberg group). Motivated by Villani's ``great unification'' program, in this talk we propose an extension of Lott-Sturm-Villani's theory, which includes sub-Riemannian geometry. This is a joint work with Barilari (Padua) and Mondino (Oxford). The talk is intended for a general audience, no previous knowledge of optimal transport or sub-Riemannian geometry is required.