Tue, 13 Feb 2024

16:00 - 17:00
L6

Large-size Behavior of the Entanglement Entropy of Free Disordered Fermions

Leonid Pastur
(King's College London / B. Verkin Institute for Low Temperature Physics and Engineering)
Abstract

We consider a macroscopic system of free lattice fermions, and we are interested in the entanglement entropy (EE) of a large block of size L of the system, treating the rest of the system as the macroscopic environment of the block. Entropy is a widely used quantifier of quantum correlations between a block and its surroundings. We begin with known results (mostly one-dimensional) on the asymptotics form of EE of translation-invariant systems for large L, where for any value of the Fermi energy there are basically two asymptotics known as area law and enhanced (violated ) area law. We then show that in the disordered case and for the Fermi energy belonging to the localized spectrum of a one-body Hamiltonian, the EE obeys the area law for all typical realizations of disorder and any dimension. As for the enhanced area law, it turns out to be possible for some special values of the Fermi energy in the one-dimensional case

Tue, 13 Feb 2024
15:00
L6

Asymptotic mapping class groups of Cantor manifolds and their finiteness properties

Nansen Petrosyan
Abstract

We introduce a new class of groups with Thompson-like group properties. In the surface case, the asymptotic mapping class group contains mapping class groups of finite type surfaces with boundary. In dimension three, it contains automorphism groups of all finite rank free groups. I will explain how asymptotic mapping class groups act on a CAT(0) cube complex which allows us to show that they are of type F_infinity. 

This is joint work with Javier Aramayona, Kai-Uwe Bux, Jonas Flechsig and Xaolei Wu.

Tue, 13 Feb 2024

14:00 - 15:00
L4

On the $(k+2,k)$-problem of Brown, Erdős and Sós

Oleg Pikhurko
(University of Warwick)
Abstract

Brown-Erdős-Sós initiated the study of the maximum number of edges in an $n$-vertex $r$-graph such that no $k$ edges span at most $s$ vertices. If $s=rk-2k+2$ then this function is quadratic in $n$ and its asymptotic was previously known for $k=2,3,4$. I will present joint work with Stefan Glock, Jaehoon Kim, Lyuben Lichev and Shumin Sun where we resolve the cases $k=5,6,7$.

Tue, 13 Feb 2024

14:00 - 15:00
L5

Functional Calculus, Bornological Algebra, and Analytic Geometry

Jack Kelly
((University of Oxford))
Abstract

Porta and Yue Yu's model of derived analytic geometry takes as its category of basic, or affine, objects the category opposite to simplicial algebras over the entire functional calculus Lawvere theory. This is analogous to Lurie's approach to derived algebraic geometry where the Lawvere theory is the one governing simplicial commutative rings, and Spivak's derived smooth geometry, using the Lawvere theory of C-infinity-rings. Although there have been numerous important applications including GAGA, base-change, and Riemann-Hilbert theorems, these methods are still missing some crucial ingredients. For example, they do not naturally beget a good definition of quasi-coherent sheaves satisfying descent. On the other hand, the Toen-Vezzosi-Deligne approach of geometry relative to a symmetric monoidal category naturally provides a definition of a category of quasi-coherent sheaves, and in two such approaches to analytic geometry using the categories of bornological and condensed abelian groups respectively, these categories do satisfy descent.  In this talk I will explain how to compare the Porta and Yue Yu model of derived analytic geometry with the bornological one. More generally we give conditions on a Lawvere theory such that its simplicial algebras embed fully faithfully into commutative bornological algebras. Time permitting I will show how the Grothendieck topologies on both sides match up, allowing us to extend the embedding to stacks.

This is based on joint work with Oren Ben-Bassat and Kobi Kremnitzer, and follows work of Kremnitzer and Dennis Borisov.

Tue, 13 Feb 2024
12:30
L4

Scattering amplitudes and Celestial Holography

Akshay Yelleshpur Srikant
(Oxford )
Abstract

The S-Matrix in flat space is a naturally holographic observable. S-Matrix elements thus contain valuable information about the putative dual CFT. In this talk, I will first introduce some basic aspects of Celestial Holography and then explain how these can be inferred directly from scattering amplitudes. I will then focus on how the singularity structure of amplitudes interplays with traditional CFT structures particularly in the context of the operator product expansion (OPE) of the dual CFT. I will conclude with some discussion about the role played by supersymmetry in simplifying the putative dual CFT.
 

Mon, 12 Feb 2024

16:30 - 17:30
L5

OxPDE-WCMB seminar - From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.

Mariya Ptashnyk
Abstract

First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities.  Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles.

Mon, 12 Feb 2024

16:30 - 17:30
L5

OxPDE-WCMB seminar - From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.

Dr Mariya Ptashnyk
(Dept of Maths Herriot Watt University)
Abstract

First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities.  Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles.

Mon, 12 Feb 2024
16:00
L2

Higher descent on elliptic curves

Sven Cats
(University of Cambridge)
Abstract

Let $E$ be an elliptic curve over a number field $K$ and $n \geq 2$ an integer. We recall that elements of the $n$-Selmer group of $E/K$ can be explicitly written in terms of certain equations for $n$-coverings of $E/K$. Writing the elements in this way is called conducting an explicit $n$-descent. One of the applications of explicit $n$-descent is in finding generators of large height for $E(K)$ and from this point of view one would like to be able to take $n$ as large as possible. General algorithms for explicit $n$-descent exist but become computationally challenging already for $n \geq 5$. In this talk we discuss combining $n$- and $(n+1)$-descents to $n(n+1)$-descent and the role that invariant theory plays in this procedure.

Mon, 12 Feb 2024
15:30
L4

A filtration of handlebody Teichmüller space

Ric Wade
((Oxford University))
Abstract

The handlebody group is defined to be the mapping class group of a handelbody (rel. boundary). It is a subgroup of the mapping class group of the surface of the handlebody, and maps onto the outer automorphism group of its fundamental group (the free group of rank equal to its genus). 

Recently Hainaut and Petersen described a subspace of moduli space forming an orbifold classifying space for the handlebody group, and combined this with work of Chan-Galatius-Payne to construct cohomology classes in the group. I will talk about how one can build on their ideas to define a cocompact EG for the handlebody group inside Teichmüller space. This is a manifold with boundary and comes with a filtration by labelled disk systems which we call the `RGB (red-green-blue) disk complex.' I will describe this filtration, use it to describe the boundary of the manifold, and speculate about potential applications to duality results. Based on work-in-progress with Dan Petersen.

Mon, 12 Feb 2024
15:30
Lecture room 5

Regularity of Random Wavelet Series

Dr Céline Esser
(Mathematics Department, Liège University)
Abstract

This presentation focuses on the study of the regulartiy of random wavelet series. We first study their belonging to certain functional spaces and we compare these results with long-established results related to random Fourier series. Next, we show how the study of random wavelet series leads to precise pointwise regularity properties of processes like fractional Brownian motion. Additionally, we explore how these series helps create Gaussian processes  with random Hölder exponents.

Mon, 12 Feb 2024
14:15
L4

Palais-Smale sequences for the prescribed Ricci curvature functional

Artem Pulemotov
(University of Queensland, Australia)
Abstract

On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with the critical points of the scalar curvature functional subject to a constraint. We provide a complete description of Palais--Smale sequences for this functional. As an application, we obtain new existence results for the prescribed Ricci curvature equation, which enables us to observe previously unseen phenomena. Joint work with Wolfgang Ziller (University of Pennsylvania).

Mon, 12 Feb 2024

14:00 - 15:00
Lecture Room 3

Do Stochastic, Feel Noiseless: Stable Optimization via a Double Momentum Mechanism

Kfir Levy
(Technion – Israel Institute of Technology)
Abstract

The tremendous success of the Machine Learning paradigm heavily relies on the development of powerful optimization methods, and the canonical algorithm for training learning models is SGD (Stochastic Gradient Descent). Nevertheless, the latter is quite different from Gradient Descent (GD) which is its noiseless counterpart. Concretely, SGD requires a careful choice of the learning rate, which relies on the properties of the noise as well as the quality of initialization.

 It further requires the use of a test set to estimate the generalization error throughout its run. In this talk, we will present a new SGD variant that obtains the same optimal rates as SGD, while using noiseless machinery as in GD. Concretely, it enables to use the same fixed learning rate as GD and does not require to employ a test/validation set. Curiously, our results rely on a novel gradient estimate that combines two recent mechanisms which are related to the notion of momentum.

Finally, as much as time permits, I will discuss several applications where our method can be extended.

Sun, 11 Feb 2024
14:00
L5

TBA

Itay Glazer
(Technion - Israel Institute of Technology)
Sun, 11 Feb 2024
14:00
L6

TBC

Itay Glazer
(Technion - Israel Institute of Technology)
Abstract

to follow

Fri, 09 Feb 2024
16:00
L1

Creating Impact for Maths Research via Consulting, Licensing and Spinouts

Dawn Gordon, Amelia Griffiths and Paul Gass
(Oxford University Innovation)
Abstract

Oxford University Innovation, the University’s commercialisation team, will explain the support they can give to Maths researchers who want to generate commercial impact from their work and expertise. In addition to an overview of consulting, this talk will explain how mathematical techniques and software can be protected and commercialised.

Fri, 09 Feb 2024

12:00 - 13:00

A (higher) categorical approach to analytic D-modules

Arun Soor
(University of Oxford)
Abstract

In this possibly speculative talk I will try to outline a way to define analytic D-modules, using (higher) category theory and the ``six operations" on quasicoherent sheaves as the main tools. The aim is to follow the successful approach of Andy Jiang in the algebraic setting, who obtained such a theory without using stacks or formal schemes (as in Gaitsgory-Rozenblyum's approach). By using local cohomology, Jiang was able to avoid enlarging the category of algebras beyond the usual ones. We believe that an analytic variant of local cohomology can be used to recover the Ardakov-Wadsley theory of D-cap modules ``on the nose". (Work in progress).

Thu, 08 Feb 2024
16:00
Lecture Room 4, Mathematical Institute

Inhomogeneous Kaufman measures and diophantine approximation

Sam Chow
(Dept. Mathematics, University of Warwick)
Abstract

Kaufman constructed a family of Fourier-decaying measures on the set of badly approximable numbers. Pollington and Velani used these to show that Littlewood’s conjecture holds for a full-dimensional set of pairs of badly approximable numbers. We construct analogous measures that have implications for inhomogeneous diophantine approximation. In joint work with Agamemnon Zafeiropoulos and Evgeniy Zorin, our idea is to shift the continued fraction and Ostrowski expansions simultaneously.

Thu, 08 Feb 2024
14:00
Lecture Room 3

From Chebfun3 to RTSMS: A journey into deterministic and randomized Tucker decompositions

Behnam Hashemi
(Leicester University)
Abstract
The Tucker decomposition is a family of representations that break up a given d-dimensional tensor into the multilinear product of a core tensor and a factor matrix along each of the d-modes. It is a useful tool in extracting meaningful insights from complex datasets and has found applications in various fields, including scientific computing, signal processing and machine learning. 
 In this talk we will first focus on the continuous framework and revisit how Tucker decomposition forms the foundation of Chebfun3 for numerical computing with 3D functions and the deterministic algorithm behind Chebfun3. The key insight is that separation of variables achieved via low-rank Tucker decomposition simplifies and speeds up lots of subsequent computations.
 We will then switch to the discrete framework and discuss a new algorithm called RTSMS (randomized Tucker with single-mode sketching). The single-mode sketching aspect of RTSMS allows utilizing simple sketch matrices which are substantially smaller than alternative methods leading to considerable performance gains. Within its least-squares strategy, RTSMS incorporates leverage scores for efficiency with Tikhonov regularization and iterative refinement for stability. RTSMS is demonstrated to be competitive with existing methods, sometimes outperforming them by a large margin.
We illustrate the benefits of Tucker decomposition via MATLAB demos solving problems from global optimization to video compression. RTSMS is joint work with Yuji Nakatsukasa.
Thu, 08 Feb 2024
14:00
N3.12

Machine Learning in HEP-TH

Dewi Gould
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 08 Feb 2024

12:00 - 13:00
L3

Ocean dynamics on the margin of rotational control

John R Taylor
(University of Cambridge)
Further Information

Professor Taylor's research focuses on the fluid dynamics of the ocean. He is particularly interested in ocean turbulence and mixing, ocean fronts and the surface boundary layer, and the impact of turbulence on micro-organisms. Recent work has uncovered a fascinating and poorly-understood collection of processes occurring at relatively small scales (<O(10km)) where the vertical motion is strong but stratification and the Earth's rotation are important factors. Since these motions are too small to be directly resolved by global ocean and climate models, understanding their impact on the structure and dynamics of the ocean is one of the most pressing topics in physical oceanography. Currently, he is studying the dynamics of upper ocean fronts, the turbulent boundary layer beneath melting ice shelves, stratified turbulence, and the influence of physical processes on biogeochemical dynamics. Please see his homepage here for more information. https://www.damtp.cam.ac.uk/person/jrt51 

Abstract

Global scale ocean currents are strongly constrained by the Earth’s rotation, while this effect is generally negligible at small scales. In between, motions with scales from 1-10km are marginally affected by the Earth’s rotation. These intermediate scales, collectively termed the ocean submesoscale, have been hidden from view until recent years. Evidence from field measurements, numerical models, and satellite data have shown that submesoscales play a particularly important role in the upper ocean where they help to control the transport of material between the ocean surface and interior. In this talk I will review some recent work on submesoscale dynamics and their influence on biogeochemistry and accumulation of microplastics in the surface waters.

 

 

Thu, 08 Feb 2024

11:00 - 12:00
C3

Model companions of fields with no points in hyperbolic varieties

Michal Szachniewicz
(University of Oxford)
Abstract

This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.

Wed, 07 Feb 2024

16:00 - 17:00
L6

Relationships between hyperbolic and classic knot invatiants

Colin McCulloch
(University of Oxford)
Abstract

For a hyperbolic knot there are two types of invariants, the hyperbolic invariants coming from the geometric structure and the classical invariants coming from the topology or combinatorics. It has been observed in many different cases that these seemingly different types of invariants are in fact related. I will give examples of these relationships and discuss in particular a link by Stoimenow between the determinant and volume.  

Wed, 07 Feb 2024
12:00
L6

Pressure jump in the Cahn-Hilliard equation

Charles Elbar
(Laboratoire Jacques Louis Lions, Sorbonne Université)
Abstract

We model a tumor as an incompressible flow considering two antagonistic effects: repulsion of cells when the tumor grows (they push each other when they divide) and cell-cell adhesion which creates surface tension. To take into account these two effects, we use a 4th-order parabolic equation: the Cahn-Hilliard equation. The combination of these two effects creates a discontinuity at the boundary of the tumor that we call the pressure jump.  To compute this pressure jump, we include an external force and consider stationary radial solutions of the Cahn-Hilliard equation. We also characterize completely the stationary solutions in the incompressible case, prove the incompressible limit and prove convergence of the parabolic problems to stationary states.

Tue, 06 Feb 2024

16:00 - 17:00
L6

Non-constant ground configurations in the disordered ferromagnet and minimal cuts in a random environment.

Michal Bassan
(University of Oxford )
Abstract
The disordered ferromagnet is a disordered version of the ferromagnetic Ising model in which the coupling constants are quenched random, chosen independently from a distribution on the non-negative reals. A ground configuration is an infinite-volume configuration whose energy cannot be reduced by finite modifications. It is a long-standing challenge to ascertain whether the disordered ferromagnet on the Z^D lattice admits non-constant ground configurations. When D=2, the problem is equivalent to the existence of bigeodesics in first-passage percolation, so a negative answer is expected. We provide a positive answer in dimensions D>=4, when the distribution of the coupling constants is sufficiently concentrated.

 
The talk will discuss the problem and its background, and present ideas from the proof. Based on joint work of with Shoni Gilboa and Ron Peled.