Thu, 25 May 2023
12:00
L1

The Thermodynamics of Mind

Gustavo Deco
(Universitat Pompeu Fabra)
Abstract

We propose a unified theory of brain function called ‘Thermodynamics of Mind’ which provides a natural, parsimonious way to explain the underlying computational mechanisms. The theory uses tools from non-equilibrium thermodynamics to describe the hierarchical dynamics of brain states over time. Crucially, the theory combines correlative (model-free) measures with causal generative models to provide solid causal inference for the underlying brain mechanisms. The model-based framework is a powerful way to use regional neural dynamics within the hierarchical anatomical brain connectivity to understand the underlying mechanisms for shaping the temporal unfolding of whole-brain dynamics in brain states. As such this model-based framework fitted to empirical data can be exhaustively investigated to provide objectively strong causal evidence of the underlying brain mechanisms orchestrating brain states. 

Wed, 24 May 2023

13:00 - 14:00
N3.12

Mathematrix: Resilience

Abstract

This week we will be discussing the theme of resilience. Free lunch provided!

Wed, 24 May 2023

10:15 - 18:00
L3

One-Day Meeting in Combinatorics

Multiple
Abstract

The speakers are Maya Stein (University of Chile), Mathias Schacht (Hamburg), János Pach (Rényi Institute, Hungary and IST Austria), Marthe Bonamy (Bordeaux)Mehtaab Sawhney (Cambridge/MIT), and Julian Sahasrabudhe (Cambridge). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Tue, 23 May 2023

16:00 - 17:00
L6

Moments of the high order derivatives of CUE characteristic polynomials

Fei Wei
(University of Oxford)
Abstract

In this talk, I will firstly give asymptotic formulas for the moments of the n-th derivative of the characteristic polynomials from the CUE. Secondly, I will talk about the connections between them and a solution of certain Painleve differential equation. This is joint work with Jonathan P. Keating.
 

Tue, 23 May 2023
15:30
C4

Multivalued Dir-Minimizing Functions

Dr Immanuel Ben Porat
(Oxford University)
Further Information

The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.

Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs and some basic geometric measure theory are recommended.

Sessions led by Dr Immanuel Ben Porat will take place on

09 May 2023 15:30 - 17:30 C4

16 May 2023 15:30 - 17:30 C4

23 May 2023 15:30 - 17:30 C4

30 May 2023 15:30 - 17:30 C4

Should you be interested in taking part in the course, please send an email to @email.

Abstract

COURSE_PROPOSAL (12)_1.pdf

The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers. 

Tue, 23 May 2023

15:00 - 16:00
L3

Uniform boundary representation of hyperbolic groups

Kevin Boucher
Abstract

After a brief introduction to subject of spherical representations of hyperbolic groups, I will present a new construction motivated by a spectral formulation of the so-called Shalom conjecture.This a joint work with Dr Jan Spakula.

Tue, 23 May 2023
14:00
C6

What we do in the shadows: mining temporal motifs from transactions on the Dark Web

Dr. Naomi Arnold
(Northeastern University London)
Abstract
Dark web marketplaces are forums where users can buy or sell illicit goods/services and transactions are typically made using cryptocurrencies. While there have been numerous coordinated shutdowns of individual markets by authorities, the ecosystem has been found to be immensely resilient. In addition, while transactions are open and visible by anyone on the blockchain, the sheer scale of the data makes monitoring beyond basic characteristics a huge effort.

In this talk, I propose the use of temporal motif counting, as a way of monitoring both the system as a whole and the users within it. Focusing on the Alphabay and Hydra dark markets, I study all the motifs formed by three sequential transactions among two to three users, finding that they can tell us something more complex than can be captured by simply degree or transaction volume. Studying motifs local to the node, I show how users form salient clusters, which is a promising route for classification or anomaly detection tasks.
Tue, 23 May 2023

14:00 - 15:00
L6

Endoscopic lifting and cohomological induction

Lucas Mason-Brown
Abstract

Let G and H be real reductive groups. To any L-homomorphism e: H^L \to G^L one can associate a map e_* from virtual representations of H to virtual representations of G. This map was predicted by Langlands and defined (in the real case) by Adams, Barbasch, and Vogan. Without further restrictions on e, this map can be very poorly behaved. A special case in which e_* exhibits especially nice behavior is the case when H is an endoscopic group. In this talk, I will introduce a more general class of L-homomorphisms that exhibit similar behavior to the endoscopic case. I will explain how this more general notion of endoscopic lifting relates to the theory of cohomological induction. I will also explain how this generalized notion of endoscopic lifting can be used to prove the unitarity of many Arthur packets. This is based on joint work with Jeffrey Adams and David Vogan.

Tue, 23 May 2023

12:00 - 13:15
L3

Construction of quantum gauge theories via stochastic quantisation

Ilya Chevyrev
(Edinburgh University)
Abstract

Recent years have seen many new ideas appearing in the solution theories of singular stochastic partial differential equations. An exciting application of SPDEs that is beginning to emerge is to the construction and analysis of quantum field theories. In this talk, I will describe how stochastic quantisation of Parisi–Wu can be used to study QFTs, especially those arising from gauge theories, the rigorous construction of which, even in low dimensions, is largely open.

 

Tue, 23 May 2023

11:00 - 12:00
L3

SDEs and rough paths on manifolds

Emilio Rossiferrucci
Abstract

I will begin by speaking about Ito SDEs on manifolds, how their meaning depends on the choice of a connection, and an example in which the Ito formulation is preferable to the more common Stratonovich one. SDEs are naturally generalised to the case of more irregular driving signals by rough differential equations (RDEs), i.e. equations driven by rough paths. I will explain how it is possible to give a coordinate-invariant definition of rough integral and rough differential equation on a manifold, even in the case of arbitrarily low regularity and when the rough path is not geometric, i.e. it does not satisfy a classical integration by parts rule. If time permits, I will end on a more recent algebraic result that makes it possible to canonically convert non-geometric RDEs to geometric ones.

Mon, 22 May 2023

17:30 - 18:30
L6

Scaling Optimal Transport for High dimensional Learning

Gabriel Peyre
(École Normale Supérieure )
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport".

Mon, 22 May 2023
16:30
L6

Optimal mass transport and sharp Sobolev inequalities

Zoltan Balogh
(Universitat Bern)
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal mass transport is a versatile tool that can be used to prove various geometric and functional inequalities. In this talk we focus on the class of Sobolev inequalities.

In the first part of the talk I present the main idea of this method, based on the work of Cordero-Erausquin, Nazaret and Villani (2004).

The second part of the talk is devoted to the joint work with Ch. Gutierrez and A. Kristály about Sobolev inequalities with weights. 

Mon, 22 May 2023

16:00 - 17:00
C4

On the Hikita-Nakajima conjecture for Slodowy slices

Dmytro Matvieievskyi
(Kavli IPMU)
Abstract

Symplectic duality predicts that affine symplectic singularities come in pairs that are in a sense dual to each other. The Hikita conjecture relates the cohomology of the symplectic resolution on one side to the functions on the fixed points on the dual side.  

In a recent work with Ivan Losev and Lucas Mason-Brown, we suggested an important example of symplectic dual pairs. Namely, a Slodowy slice to a nilpotent orbit should be dual to an affinization of a certain cover of a special orbit for the Langlands dual group. In that paper, we explain that the appearance of the special unipotent central character can be seen as a manifestation of a slight generalization of the Hikita conjecture for this pair.

However, a further study shows that several things can (and do!) go wrong with the conjecture. In this talk, I will explain a modified version of the statement, recent progress towards the proof, and how special unipotent characters appear in the picture. It is based on a work in progress with Do Kien Hoang and Vasily Krylov.

Mon, 22 May 2023
16:00
C3

The modular approach for solving $x^r+y^r=z^p$ over totally real number fields

Diana Mocanu
(University of Warwick)
Abstract

We will first introduce the modular method for solving Diophantine Equations, famously used to
prove the Fermat Last Theorem. Then, we will see how to generalize it for a totally real number field $K$ and
a Fermat-type equation $Aa^p+Bb^q=Cc^r$ over $K$. We call the triple of exponents $(p,q,r)$ the 
signature of the equation. We will see various results concerning the solutions to the Fermat equation with
signatures $(r,r,p)$ (fixed $r$). This will involve image of inertia comparison and the study of certain
$S$-unit equations over $K$. If time permits, we will discuss briefly how to attack the very similar family
of signatures $(p,p,2)$ and $(p,p,3)$. 

Mon, 22 May 2023
15:30
L5

Combining the minimal-separating-set trick with simplicial volume

Hannah Alpert
Abstract

In 1983 Gromov proved the systolic inequality: if M is a closed, essential n-dimensional Riemannian manifold where every loop of length 2 is null-homotopic, then the volume of M is at least a constant depending only on n.  He also proved a version that depends on the simplicial volume of M, a topological invariant generalizing the hyperbolic volume of a closed hyperbolic manifold.  If the simplicial volume is large, then the lower bound on volume becomes proportional to the simplicial volume divided by the n-th power of its logarithm.  Nabutovsky showed in 2019 that Papasoglu's method of area-minimizing separating sets recovers the systolic inequality and improves its dependence on n.  We introduce simplicial volume to the proof, recovering the statement that the volume is at least proportional to the square root of the simplicial volume.

Mon, 22 May 2023

15:30 - 16:30
L1

Analysis of the Anderson operator

Ismael Bailleul
Abstract

The Anderson operator is a perburbation of the Laplace-Beltrami operator by a space white noise potential. I will explain how to get a short self-contained functional analysis construction of the operator and how a sharp description of its heat kernel leads to useful quantitative estimates on its eigenvalues and eigenfunctions. One can associate to Anderson operator a (doubly) random field called the Anderson Gaussian free field. The law of its (random) partition function turns out to characterize the law of the spectrum of the operator. The square of the Anderson Gaussian free field turns out to be related to a probability measure on paths built from the operator, called the polymer measure.

Mon, 22 May 2023
14:15
L4

Stability of weak Cayley fibrations

Gilles Englebert
(University of Oxford)
Abstract

The SYZ conjecture is a geometric way of understanding mirror symmetry via the existence of dual special Lagrangian fibrations on mirror Calabi-Yau manifolds. Motivated by this conjecture, it is expected that $G_2$ and $Spin(7)$-manifolds admit calibrated fibrations as well. I will explain how to construct examples of a weaker type of fibration on compact $Spin(7)$-manifolds obtained via gluing, and give a hint as to why the stronger fibrations are still elusive. The key ingredient is the stability of the weak fibration property under deformation of the ambient $Spin(7)$-structure.

Mon, 22 May 2023
13:00
L1

Generalized Charges of Symmetries

Lakshya Bhardwaj
(Oxford)
Abstract

I will discuss various possible ways a global symmetry can act on operators in a quantum field theory. The possible actions on q-dimensional operators are referred to as q-charges of the symmetry. Crucially, there exist generalized higher-charges already for an ordinary global symmetry described by a group G. The usual charges are 0-charges, describing the action of the symmetry group G on point-like local operators, which are well-known to correspond to representations of G. We find that there is a neat generalization of this fact to higher-charges: i.e. q-charges are (q+1)-representations of G. I will also discuss q-charges for generalized global symmetries, including not only invertible higher-form and higher-group symmetries, but also non-invertible categorical symmetries. This talk is based on a recent (arXiv: 2304.02660) and upcoming works with Sakura Schafer-Nameki.

Fri, 19 May 2023
16:00
L1

SIAM Student Chapter: 3-minute thesis competition

Abstract

For week 4's @email session we welcome the SIAM-IMA student chapter, running their annual Three Minute Thesis competition.

The Three Minute Thesis competition challenges graduate students to present their research in a clear and engaging manner within a strict time limit of three minutes. Each presenter will be allowed to use only one static slide to support their presentation, and the panel of esteemed judges (details TBC) will evaluate the presentations based on criteria such as clarity, pacing, engagement, enthusiasm, and impact. Each presenter will receive a free mug and there is £250 in cash prizes for the winners. If you're a graduate student, sign up here (https://oxfordsiam.com/3mt) by Friday of week 3 to take partAnd if not, come along to support your DPhil friends and colleagues, and to learn about the exciting maths being done by our research students.

Fri, 19 May 2023

15:00 - 16:00
Lecture room 5

Some recent progress in random geometric graphs: beyond the standard regimes

Xiaochuan Yang
Abstract

I will survey on the cluster structure of random geometric graphs in a regime that is less discussed in the literature. The statistics of interest include the number of k-components, the number of components, the number of vertices in the giant component, and the connectivity threshold. We show LLN and normal/Poisson approximation by Stein's method. Based on recent joint works with Mathew Penrose (Bath).

Fri, 19 May 2023

14:00 - 15:00
L4

Ocean tides in the outer solar system

Hamish Hay
(Department of Earth Sciences, University of Oxford)
Abstract

The giant planets, Jupiter and Saturn, all host several satellites that contain vast liquid water reservoirs beneath their frozen surfaces. These Ocean Worlds and some of the most compelling targets for future exploration of the solar system due to their potential for hosting habitable subsurface environments. The internal dynamics of these bodies is, as yet, largely unknown.

A key process that shapes the internal and orbital evolution of these systems is tides and the resultant dissipation of heat. I will review how these global ocean’s dynamically respond to the tide-generating potentials that are relevant in tightly-packed planetary systems, including the physics and mathematical techniques used to model global tidal flow. Oceanic dissipation rates due to tides will be estimated, including the effect of a thick global ice layer above the ocean and tides raised by neighbouring moons. I will end on recent work regarding the generation of weak mean flows via periodic tidal forcing.

Fri, 19 May 2023

14:00 - 15:00
Virtual

Mapping and navigating biology and chemistry with genome-scale imaging

Dr Imran Haque
(Recursion Pharmaceuticals)
Abstract

 

Image-based readouts of biology are information-rich and inexpensive. Yet historically, bespoke data collection methods and the intrinsically unstructured nature of image data have made these assays difficult to work with at scale. This presentation will discuss advances made at Recursion to industrialise the use of cellular imaging to decode biology and drive drug discovery. First, the use of deep learning allows the transformation of unstructured images into biologically meaningful representations, enabling a 'map of biology' relating genetic and chemical perturbations to scale drug discovery. Second, building such a map at whole-genome scale led to the discovery of a "proximity bias" globally confounding CRISPR-Cas9-based functional genomics screens. Finally, I will discuss how publicly-shared resources from Recursion, including the RxRx3 dataset and MolRec application, enable downstream research both on cellular images themselves and on deep learning-derived embeddings, making advanced image analysis more accessible to researchers worldwide.

Fri, 19 May 2023

12:00 - 13:00
N3.12

The first cohomology of submodule-subalgebras of the Witt algebra

Lucas Buzaglo
(University of Edinburgh)
Abstract

The study of cohomology of infinite-dimensional Lie algebras was started by Gel'fand and Fuchs in the late 1960s. Since then, significant progress has been made, mainly focusing on the Witt algebra (the Lie algebra of vector fields on the punctured affine line) and some of its subalgebras. In this talk, I will explain the basics of Lie algebra cohomology and sketch the computation of the first cohomology group of certain subalgebras of the Witt algebra known as submodule-subalgebras. Interestingly, these cohomology groups are, in some sense, controlled by the cohomology of the Witt algebra. This can be explained by the fact that the Witt algebra can be abstractly reconstructed from any of its submodule-subalgebras, which can be described as a universal property satisfied by the Witt algebra.

Thu, 18 May 2023
18:30
Science Museum, London, SW7

Oxford Mathematics London Public Lecture: The Magic of the Primes - James Maynard with Hannah Fry SOLD OUT

James Maynard and Hannah Fry
Further Information

Please note this lecture is at the Science Museum, London, SW7.

In July 2022 Oxford Mathematician James Maynard received the Fields Medal, the highest honour for a mathematician under the age of 40, for his groundbreaking work on prime numbers. In this lecture he will explain the fascinations and frustrations of the primes before sitting down with Hannah to discuss his work and his life. 

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Primes image

 

Thu, 18 May 2023
17:00
L3

How to find pointwise definable and Leibnizian extensions of models of arithmetic and set theory

Joel David Hamkins
(University of Notre Dame)
Abstract

I shall present a new flexible method showing that every countable model of PA admits a pointwise definable end-extension, one in which every point is definable without parameters. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

Thu, 18 May 2023
16:00
L5

Rational points on Erdős-Selfridge curves

Kyle Pratt
(University of Oxford)
Abstract

Many problems in number theory are equivalent to determining all of the rational points on some curve or family of curves. In general, finding all the rational points on any given curve is a challenging (even unsolved!) problem. 

The focus of this talk is rational points on so-called Erdős-Selfridge curves. A deep conjecture of Sander, still unproven in many cases, predicts all of the rational points on these curves. 

I will describe work-in-progress proving new cases of Sander's conjecture, and sketch some ideas in the proof. The core of the proof is a `mass increment argument,' which is loosely inspired by various increment arguments in additive combinatorics. The main ingredients are a mixture of combinatorial ideas and quantitative estimates in Diophantine geometry.

Thu, 18 May 2023

16:00 - 17:00
L6

Volatility Forecasting with Machine Learning and Intraday Commonality

Yihuang Zhang
Abstract

We apply machine learning models to forecast intraday realized volatility (RV), by exploiting commonality in intraday volatility via pooling stock data together, and by incorporating a proxy for the market volatility. Neural networks dominate linear regressions and tree-based models in terms of performance, due to their ability to uncover and model complex latent interactions among variables. Our findings remain robust when we apply trained models to new stocks that have not been included in the training set, thus providing new empirical evidence for a universal volatility mechanism among stocks. Finally, we propose a new approach to forecasting one-day-ahead RVs using past intraday RVs as predictors, and highlight interesting time-of-day effects that aid the forecasting mechanism. The results demonstrate that the proposed methodology yields superior out-of-sample forecasts over a strong set of traditional baselines that only rely on past daily RVs.

Thu, 18 May 2023
14:00
N3.12

Maldacena’s quantum mechanical system describing a black hole

Daniel Pajer
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 18 May 2023
14:00
L3

Recent advances in mixed finite element approximation for poroelasticity

Arbaz Khan
(IIT Roorkee)
Abstract

Linear poroelasticity models have important applications in biology and geophysics. In particular, the well-known Biot consolidation model describes the coupled interaction between the linear response of a porous elastic medium saturated with fluid and a diffusive fluid flow within it, assuming small deformations. This is the starting point for modeling human organs in computational medicine and for modeling the mechanics of permeable
rock in geophysics. Finite element methods for Biot’s consolidation model have been widely studied over the past four decades.
In the first part of the talk, we discuss a posteriori error estimators for locking-free mixed finite element approximation of Biot’s consolidation model. The simplest of these is a conventional residual-based estimator. We establish bounds relating the estimated and true errors, and show that these are independent of the physical parameters. The other two estimators require the solution of local problems. These local problem estimators are also shown to be reliable, efficient and robust. Numerical results are presented that
validate the theoretical estimates, and illustrate the effectiveness of the estimators in guiding adaptive solution algorithms.
In the second part of talk, we discuss a novel locking-free stochastic Galerkin mixed finite element method for the Biot consolidation model with uncertain Young’s modulus and hydraulic conductivity field. After introducing a five-field mixed variational formulation of the standard Biot consolidation model, we discuss stochastic Galerkin mixed finite element approximation, focusing on the issue of well-posedness and efficient linear algebra for the discretized system. We introduce a new preconditioner for use with MINRES and
establish eigenvalue bounds. Finally, we present specific numerical examples to illustrate the efficiency of our numerical solution approach.

Finally, we discuss some remarks related to non-conforming approximation of Biot’s consolidation model.


References:
1. A. Khan, D. J. Silvester, Robust a posteriori error estimation for mixed finite
element approximation of linear poroelsticity, IMA Journal of Numerical Analysis, Oxford University Press, 41 (3), 2021, 2000-2025.
2. A. Khan, C. E. Powell, Parameter-robust stochastic Galerkin approxination for linear poroelasticity with uncertain inputs, SIAM Journal on Scientific Computing (SISC), 43 (4), 2021, B855-B883.
3. A. Khan, P. Zanotti, A nonsymmetric approach and a quasi-optimal and robust discretization for the Biot’s model. Mathematics of Computation, 91 (335), 2022, 1143-1170.
4. V. Anaya, A. Khan, D. Mora, R. Ruiz-Baier, Robust a posteriori error analysis for rotation-based formulations of the elasticity/poroelasticity coupling, SIAM Journal
on Scientific Computing (SISC), 2022.

Thu, 18 May 2023
12:00
L1

Two Stories of Light and Life

Maziyar Jalaal
(University of Amsterdam)
Abstract

My talk will have two parts. First, I will tell you how a single cell produces light to survive; then, I will explain how a huddle of chloroplasts in cells form glasses to optimize plant life. Part I: Bioluminescence (light generation in living organisms) has mesmerized humans since thousands of years ago. I will first go over the recent progress in experimental and mathematical biophysics of single-cell bioluminescence (PRL 125 (2), 028102, 2020) and then will go beyond and present a lab-scale experiment and a continuum model of bioluminescent breaking waves. Part II: To remain efficient during photosynthesis, plants can re-arrange the internal structure of cells by the active motion of chloroplasts. I will show that the chloroplasts can behave like a densely packed light-sensitive active matter, whose non-gaussian athermal fluctuations can lead to various self-organization scenarios, including glassy dynamics under dim lights (PNAS 120 (3), 2216497120, 2023). To this end, I will also present a simple model that captures the dynamic of these biological glasses.

Wed, 17 May 2023
16:00
L6

A brief history of virtual Haken

Filippo Baroni
(University of Oxford)
Abstract

The virtual Haken theorem is one of the most influential recent results in 3-manifold theory. The statement dates back to Waldhausen, who conjectured that every aspherical closed 3-manifold has a finite cover containing an essential embedded closed surface. The proof is usually attributed to Agol, although his virtual special theorem is only the last piece of the puzzle. This talk is dedicated to the unsung heroes of virtual Haken, the mathematicians whose invaluable work helped turning this conjecture into a theorem. We will trace the history of a mathematical thread that connects Thurston-Perelman's geometrisation to Agol's final contribution, surveying Kahn-Markovic's surface subgroup theorem, Bergeron-Wise's cubulation of 3-manifold groups, Haglund-Wise's special cube complexes, Wise's work on quasi-convex hierarchies and Agol-Groves-Manning's weak separation theorem.

Tue, 16 May 2023

16:00 - 17:00
L5

Some extensions of the Katznelson-Tzafriri theorem

Charles Batty
(University of Oxford)
Abstract

In 1986, Katznelson and Tzafriri proved that, if $T$ is a power-bounded operator on a Banach space $X$, and the spectrum of $T$ meets the unit circle only at 1, then $\|T^n(I-T)\| \to 0$ as $n\to\infty$. Actually, they went further and proved that $\|T^nf(T)\| \to 0$ if $T$ and $f$ satisfy certain conditions. Soon afterward, analogous results were obtained for bounded $C_0$-semigroups $(T(t))_{t\ge0}$. Further extensions and variants were proved later. I will speak about several extensions to the Katznelson-Tzafriri theorem(s), including in particular a recent result(s) obtained by David Seifert and myself.

Tue, 16 May 2023
15:30
L2

Topological recursion, exact WKB analysis, and the (uncoupled) BPS Riemann-Hilbert problem

Omar Kidwai
(University of Birmingham)
Abstract
The notion of BPS structure describes the output of the Donaldson-Thomas theory of CY3 triangulated categories, as well as certain four-dimensional N=2 QFTs. Bridgeland formulated a certain Riemann-Hilbert-like problem associated to such a structure, seeking functions in the ℏ plane with given asymptotics whose jumping is controlled by the BPS (or DT) invariants. These appear in the description of natural complex hyperkahler metrics ("Joyce structures") on the tangent bundle of the stability space,and physically correspond to the "conformal limit". 
 
Starting from the datum of a quadratic differential on a Riemann surface X, I'll briefly recall how to associate a BPS structure to it, and explain, in the simplest examples, how to produce a solution to the corresponding Riemann-Hilbert problem using a procedure called topological recursion, together with exact WKB analysis of the resulting "quantum curve". Based on joint work with K. Iwaki.
Tue, 16 May 2023
15:30
C4

Multivalued Dir-Minimizing Functions

Dr Immanuel Ben Porat
(Oxford University)
Further Information

The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.

Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs and some basic geometric measure theory are recommended.

Sessions led by  Dr Immanuel Ben Porat will take place on

09 May 2023 15:30 - 17:30 C4

16 May 2023 15:30 - 17:30 C4

23 May 2023 15:30 - 17:30 C4

30 May 2023 15:30 - 17:30 C4

Should you be interested in taking part in the course, please send an email to @email.

Abstract

COURSE_PROPOSAL (12)_0.pdf

The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers. 

Tue, 16 May 2023

15:00 - 16:00
L3

Parabolic representations of the free group F_2 in PSL(2,C)

Gaven Martin
Abstract

A parabolic representation of the free group  is one in which the images of both generators are parabolic elements of $PSL(2,\IC)$. The Riley slice is a closed subset ${\cal R}\subset \IC$ which is a model for the moduli space of parabolic, discrete and faithful representations. The complement of the Riley slice is a bounded Jordan domain within which there are isolated points, accumulating only at the boundary, corresponding to parabolic discrete and faithful representations of rigid subgroups of $PSL(2,\IC)$. Recent work of Aimi, Akiyoshi, Lee, Oshika, Parker, Lee, Sakai, Sakuma \& Yoshida, have topologically identified all these groups. Here we give the first  substantive properties of the nondiscrete representations using ergodic properties of the action of a polynomial semigroup and identifying the Riley slice as the ``Julia set’’ of this dynamical system. We prove a supergroup density theorem: given any irreducible parabolic representation of $F_2$ whatsoever, {\em any}  non-discrete parabolic representation has an arbitrarily small perturbation which contains that group as a conjugate.  Using these ideas we then show that there are nondiscrete parabolic representations with an arbitrarily large number of distinct Nielsen classes of parabolic generators.

Tue, 16 May 2023
14:30
L3

On the Initialisation of wide Neural Networks: the Edge of Chaos

Thiziri Nait Saada
(University of Oxford)
Abstract

 Wide Neural Networks are well known for their Gaussian Process behaviour. Based upon this fact, an initialisation scheme for the weights and biases of a network preserving some geometrical properties of the input data is presented — The edge-of-chaos. This talk will introduce such a scheme before briefly mentioning a recent contribution related to the edge-of-chaos dynamics of wide randomly initialized low-rank feedforward networks. Formulae for the optimal weight and bias variances are extended from the full-rank to low-rank setting and are shown to follow from multiplicative scaling. The principle second order effect, the variance of the input-output Jacobian, is derived and shown to increase as the rank to width ratio decreases. These results inform practitioners how to randomly initialize feedforward networks with a reduced number of learnable parameters while in the same ambient dimension, allowing reductions in the computational cost and memory constraints of the associated network.

Tue, 16 May 2023

14:00 - 15:00
L5

Thresholds: from small p regime to general

Tomasz Przybyłowski
(University of Oxford)
Abstract

Let $p_c$ and $q_c$ be the threshold and the expectation threshold, respectively, of an increasing family $F$ of subsets of a finite set $X$. Recently, Park and Pham proved KahnKalai conjecture stating that a not-too-large multiple of $q_c$ is an upper bound on $p_c$. In the talk, I will present a slight improvement to the ParkPham theorem, which is obtained from transferring the threshold result from the small $p$ regime to general $p$. Based on joint work with Oliver Riordan.

Tue, 16 May 2023
14:00
C6

Laplacian renormalization group for heterogeneous networks

Dr. Pablo Villegas
(Enrico Fermi Center for Study and Research)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

Pablo's main research interests concern complex systems in various fields, from biology to self-organized criticality theory, both from a theoretical and an applicative point of view.
As for the theoretical aspect, he contributed to the definition of mesoscopic models of the dynamics of the cortex, to the analysis of Griffiths Phases in complex networks. In term of applied works, he conducted an analysis of emerging patterns in tropical forests, such as those of Barro Colorado in Panama.

In this seminar, Pablo will present his recent work titled "Laplacian renormalization group for heterogeneous networks", published in Nature Physics earlier this year (link to the paper below).
 

Article: https://www.nature.com/articles/s41567-022-01866-8

 

Join Zoom Meeting
https://zoom.us/j/99314750082?pwd=L3kvZVh0TVJNRnk5Tm95YUpVODVRZz09

Meeting ID: 993 1475 0082
Passcode: 669691

 

Abstract

Complex networks usually exhibit a rich architecture organized over multiple intertwined scales. Information pathways are expected to pervade these scales reflecting structural insights that are not manifest from analyses of the network topology. Moreover, small-world effects correlate with the different network hierarchies complicating identifying coexisting mesoscopic structures and functional cores. We present a communicability analysis of effective information pathways throughout complex networks based on information diffusion to shed further light on these issues. This leads us to formulate a new renormalization group scheme for heterogeneous networks. The Renormalization Group is the cornerstone of the modern theory of universality and phase transitions, a powerful tool to scrutinize symmetries and organizational scales in dynamical systems. However, its network counterpart is particularly challenging due to correlations between intertwined scales. The Laplacian RG picture for complex networks defines both the supernodes concept à la Kadanoff, and the equivalent momentum space procedure à la Wilson for graphs.

Tue, 16 May 2023

14:00 - 15:00
L6

Profinite completion of free profinite groups

Tamar Bar-On
(University of Oxford)
Abstract

The pro-C completion of a free profinite group on an infinite set of generators is a profinite group of a greater rank. However, it is still not known whether it is a free profinite group too.  We will discuss this question, present a positive answer for some special varieties, and show partial results regarding the general case. In addition, we present the infinite tower of profinite completions, which leads to a generalisation for completions of higher orders. 

Tue, 16 May 2023
14:00
L3

Discrete Tensor-Product BGG Sequences: Splines and Finite Elements

Duygu Sap
(University of Oxford)
Abstract

Placeholder entry; date+time TBC. 

Abstract for talk: In this talk, we present a systematic discretization of the Bernstein-Gelfand-Gelfand (BGG) diagrams and complexes over cubical meshes of arbitrary dimension via the use of tensor-product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and div-div complexes as examples for our construction.

Tue, 16 May 2023
12:30
C3

Structure-Preserving Finite-Element Methods for Inhomogeneous and Time-Dependent PDEs

Boris Andrews
Abstract

PDEs frequently exhibit certain physical structures that guide their behaviour, e.g. energy/helicity dissipation, Hamiltonians, and material conservation. Preserving these structures during numerical discretisation is essential.

Although the finite-element method has proven powerful in constructing such models, incorporating inhomogeneous(/non-zero) boundary conditions has been a significant challenge. We propose a technique that addresses this issue, deriving structure-preserving models for diverse inhomogeneous problems.

Moreover, this technique enables the derivation of novel structure-preserving timesteppers for time-dependent problems. Analogies can be drawn with the other workhorse of modern structure-preserving methods: symplectic integrators.

Tue, 16 May 2023

12:00 - 13:15
L3

Abelian Chern-Simons theory on the lattice

Tin Sulejmanpasic
(University of Durham)
Abstract

I will discuss a formulation of an Abelian Chern-Simons theory on the lattice employing the modified Villain formalism. The theory suffers from a well-known problem of having extra zero modes in the Gaussian operator. I will argue that these zero modes are associated with a kind of subsystem symmetry which projects out almost all naive Wilson loops. The operators which survive are framed Wilson loops. These turn out to be topological charges of the associated one-form symmetry, and it has the correct topological spin and correlation functions.

Tue, 16 May 2023

11:00 - 12:00
L3

DLA and related models, part II

Dmitry Belyaev
Abstract

This will be a continuation of the talk from last week (9 May). 

Mon, 15 May 2023
16:30
L4

Lord Rayleigh’s conjecture for clamped plates in curved spaces

Alexandru Kristaly
(Óbuda University)
Abstract

The talk is focused on the clamped plate problem, initially formulated by Lord Rayleigh in 1877, and solved by M. Ashbaugh & R. Benguria (Duke Math. J., 1995) and N. Nadirashvili (Arch. Ration. Mech. Anal., 1995) in 2 and 3 dimensional euclidean spaces. We consider the same problem on both negatively and positively curved spaces, and provide various answers depending on the curvature, dimension and the width/size of the clamped plate.

Mon, 15 May 2023
16:00
C3

Ranges of polynomials control degree ranks of Green and Tao over finite prime fields

Thomas Karam
(University of Oxford)
Abstract

Let $p$ be a prime, let $1 \le t < d < p$ be integers, and let $S$ be a non-empty subset of $\mathbb{F}_p$ (which may be thought of as being $\{0,1\}$). We will establish that if a polynomial $P:\mathbb{F}_p^n \to \mathbb{F}_p$ with degree $d$ is such that the image $P(S^n)$ does not contain the full image $A(\mathbb{F}_p)$ of any non-constant polynomial $A: \mathbb{F}_p \to \mathbb{F}_p$ with degree at most $t$, then $P$ coincides on $S^n$ with a polynomial $Q$ that in particular has bounded degree-$\lfloor d/(t+1) \rfloor$-rank in the sense of Green and Tao, and has degree at most $d$. Likewise, we will prove that if the assumption holds even for $t=d$ then $P$ coincides on $S^n$ with a polynomial determined by a bounded number of coordinates and with degree at most $d$.

Mon, 15 May 2023
15:30
L5

Virtual classes of character stacks

Marton Hablicsek
Abstract

Questions about the geometry of G-representation varieties on a manifold M have attracted many researchers as the theory combines the algebraic geometry of G, the topology of M, and the group theory and representation theory of G and the fundamental group of M. In this talk, I will explain how to construct a Topological Quantum Field Theory to compute virtual classes of character stacks (G-representation varieties equipped with the adjoint G-action) in the Grothendieck ring of stacks. I will also show a few features of the construction (for instance, how to obtain arithmetic information) focusing on a couple of simple examples.
The work is joint with Jesse Vogel and Ángel González-Prieto.  

Mon, 15 May 2023

15:30 - 16:30
L1

Mean-field Optimization regularized by Fisher Information

Julien Claisse
Abstract

Recently there is a rising interest in the research of mean-field optimization, in particular because of its role in analyzing the training of neural networks. In this talk, by adding the Fisher Information (in other word, the Schrodinger kinetic energy) as the regularizer, we relate the mean-field optimization problem with a so-called mean field Schrodinger (MFS) dynamics. We develop a free energy method to show that the marginal distributions of the MFS dynamics converge exponentially quickly towards the unique minimizer of the regularized optimization problem. We shall see that the MFS is a gradient flow on the probability measure space with respect to the relative entropy. Finally we propose a Monte Carlo method to sample the marginal distributions of the MFS dynamics. This is a joint work with Giovanni Conforti, Zhenjie Ren and Songbo Wang.

Mon, 15 May 2023
14:15
L4

Degenerating conic Kähler-Einstein metrics

Henri Guenancia
(CNRS / Institut de Mathématiques de Toulouse)
Abstract

I will discuss a joint work with Olivier Biquard about degenerating conic Kähler-Einstein metrics by letting the cone angle go to zero. In the case where one is given a smooth anticanonical divisor $D$ in a Fano manifold $X$, I will explain how the complete Ricci flat Tian-Yau metric on $X \smallsetminus D$ appears as rescaled limit of such conic KE metrics.