Thu, 21 Nov 2019

12:00 - 13:00
L4

Analysis of systems with small cross-diffusion

Luca Alasio
(Gran Sasso Science Institute GSSI)
Abstract

I will present recent results concerning a class of nonlinear parabolic systems of partial differential equations with small cross-diffusion (see doi.org/10.1051/m2an/2018036 and arXiv:1906.08060). Such systems can be interpreted as a perturbation of a linear problem and they have been proposed to describe the dynamics of a variety of large systems of interacting particles. I will discuss well-posedness, regularity, stability and convergence to the stationary state for (strong) solutions in an appropriate Banach space. I will also present some applications and refinements of the above-mentioned results for specific models.

Thu, 21 Nov 2019

11:30 - 12:30
C4

On NIP formulas in groups

Gabriel Conant
(Cambridge)
Abstract

I will present joint work with A. Pillay on the theory of NIP formulas in arbitrary groups, which exhibit a local formulation of the notion of finitely satisfiable generics (as defined by Hrushovski, Peterzil, and Pillay). This setting generalizes ``local stable group theory" (i.e., the study of stable formulas in groups) and also the case of arbitrary NIP formulas in pseudofinite groups. Time permitting, I will mention an application of these results in additive combinatorics.

Wed, 20 Nov 2019
16:00
C1

The homology of the mapping class group

Luciana Bonatto
(University of Oxford)
Abstract

We will discuss what it means to study the homology of a group via the construction of the classifying space. We will look at some examples of this construction and some of its main properties. We then use this to define and study the homology of the mapping class group of oriented surfaces, focusing on the approach used by Harer to prove his Homology Stability Theorem.

Wed, 20 Nov 2019
15:00
N3.12

The Stacks Project (abridged/bowdlerized)

Jay Swar
(Oxford University)
Abstract

In this talk, I will introduce the notion of a sheaf on a topological space. I will then explain why "topological spaces" are an artificial limitation on enjoying life (esp. cohomology) to the fullest and what to do about that (answer: sites). Sheaves also fail our needs, but they have a suitable natural upgrade (i.e. stacks).
This talk will be heavily peppered with examples that come from the world around you (music, torsors, etc.).
 

Tue, 19 Nov 2019

17:00 - 18:00
C1

Semigroup C*-algebras associated with arithmetic progressions

Chris Bruce
(University of Victoria)
Abstract

Congruence monoids in the ring of integers are given by certain unions of arithmetic progressions. To each congruence monoid, there is a canonical way to associate a semigroup C*-algebra. I will explain this construction and then discuss joint work with Xin Li on K-theoretic invariants. I will also indicate how all of this generalizes to congruence monoids in the ring of integers of an arbitrary algebraic number field.

Tue, 19 Nov 2019

15:30 - 16:30
L4

3264 Conics in A Second

Bernd Sturmfels
(Berkeley and MPI Leipzig)
Abstract

Enumerative algebraic geometry counts the solutions to certain geometric constraints. Numerical algebraic geometry determines these solutions for any given 
instance. This lecture illustrates how these two fields complement each other, especially in the light of emerging new applications. We start with a gem from
the 19th century, namely the 3264 conics that are tangent to five given conics in the plane. Thereafter we turn to current problems in statistics, with focus on 
maximum likelihood estimation for linear Gaussian covariance models.
 

Tue, 19 Nov 2019
14:30
L5

An approximate message passing algorithm for compressed sensing MRI

Charles Millard
(Oxford)
Abstract

The Approximate Message Passing (AMP) algorithm is a powerful iterative method for reconstructing undersampled sparse signals. Unfortunately, AMP is sensitive to the type of sensing matrix employed and frequently encounters convergence problems. One case where AMP tends to fail is compressed sensing MRI, where Fourier coefficients of a natural image are sampled with variable density. An AMP-inspired algorithm constructed specifically for MRI is presented that exhibits a 'state evolution', where at every iteration the image estimate before thresholding behaves as the ground truth corrupted by Gaussian noise with known covariance. Numerical experiments explore the practical benefits of such effective noise behaviour.
 

Tue, 19 Nov 2019

14:00 - 15:00
L6

Phase transitions in random regular graphs

Endre Csóka
Further Information

We analyze the asymptotic relative size of the largest independent set of a random d-regular graph on n → ∞ vertices. This problem is very different depending on d because of a surprising phase transition. This is somewhat similar to finding the density of ``water'' above and below its freezing point. These phase transitions are related to algorithmic thresholds, mixing properties, counting, graph reconstruction, graph limits and other questions. We are still far from a complete understanding of all these questions. Our tools are partially coming from statistical physics. 

Tue, 19 Nov 2019
14:00
L5

Quotient-Space Boundary Element Methods for Scattering at Multi-Screens

Carolina Urzua Torres
(Oxford)
Abstract


Boundary integral equations (BIEs) are well established for solving scattering at bounded infinitely thin objects, so-called screens, which are modelled as “open surfaces” in 3D and as “open curves” in 2D. Moreover, the unknowns of these BIEs are the jumps of traces across $\Gamma$. Things change considerably when considering scattering at multi-screens, which are arbitrary arrangements of thin panels that may not be even locally orientable because of junction points (2D) or junction lines (3D). Indeed, the notion of jumps of traces is no longer meaningful at these junctions. This issue can be solved by switching to a quotient space perspective of traces, as done in recent work by Claeys and Hiptmair. In this talk, we present the extension of the quotient-space approach to the Galerkin boundary element (BE) discretization of first-kind BIEs. Unlike previous approaches, the new quotient-space BEM relies on minimal geometry information and does not require any special treatment at junctions. Moreover, it allows for a rigorous numerical analysis.
 

Tue, 19 Nov 2019

12:45 - 14:00
C5

Droplet impact on deformable substrates: A combined theoretical and computational approach

Michael Negus
(Oxford University)
Abstract

Recent advances in experimental imaging techniques have allowed us to observe the fine details of how droplets behave upon impact onto a substrate. However, these are highly non-linear, multiscale phenomena and are thus a formidable challenge to model. In addition, when the substrate is deformable, such as an elastic sheet, the fluid-structure interaction introduces an extra layer of complexity.

We present two modeling approaches for droplet impact onto deformable substrates: matched asymptotics and direct numerical simulations. In the former, we use Wagner's theory of impact to derive analytical expressions which approximate the behavior during the early time of impact. In the latter, we use the open source volume-of-fluid code Basilisk to conduct simulations designed to give insight into the later times of impact.

We conclude by showing how these methods are complementary, and a combination of both can give a thorough understanding of the droplet impact across timescales. 

Tue, 19 Nov 2019

12:00 - 13:00
C1

The Multiplex Nature of Global Financial Contagion

R. Maria del Rio-Chanona
(Institute for New Economic Thinking)
Abstract

Identifying systemically important countries is crucial for global financial stability. In this work we use (multilayer) network methods to identify systemically important countries. We study the financial system as a multilayer network, where each layer represent a different type of financial investment between countries. To rank countries by their systemic importance, we implement MultiRank, as well a simplistic model of financial contagion. In this first model, we consider that each country has a capital buffer, given by the capital to assets ratio. After the default of an initial country, we model financial contagion with a simple rule: a solvent country defaults when the amount of assets lost, due to the default of other countries, is larger than its capital. Our results show that when we consider that there are various types of assets the ranking of systemically important countries changes. We make all our methods available by introducing a python library. Finally, we propose a more realistic model of financial contagion that merges multilayer network theory and the contingent claims sectoral balance sheet literature. The aim of this framework is to model the banking, private, and sovereign sector of each country and thus study financial contagion within the country and between countries. 

Mon, 18 Nov 2019

19:00 - 20:15

Oxford Mathematics London Public Lecture: Timothy Gowers - Productive generalization: one reason we will never run out of interesting mathematical questions SOLD OUT

Timothy Gowers and Hannah Fry
(University of Cambridge and UCL)
Further Information

Productive generalization: one reason we will never run out of interesting mathematical questions.

Tim Gowers is one of the world's leading mathematicians. He is a Royal Society Research Professor at the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge, where he also holds the Rouse Ball chair, and is a Fellow of Trinity College, Cambridge. In 1998, he received the Fields Medal for research connecting the fields of functional analysis and combinatorics.

After his lecture Tim will be in conversation with Hannah Fry. Hannah is a lecturer in the Mathematics of Cities at the Centre for Advanced Spatial Analysis at UCL. She is also a well-respected broadcaster and the author of several books including the recently published 'Hello World: How to be Human in the Age of the Machine.'

This lecture is in partnership with the Science Museum in London where it will take place.  

Science Museum, Exhibition Road, London, SW7 2DD

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/gowers

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Mon, 18 Nov 2019

18:45 - 19:45
L2

Applied Pure at the Mathematical Institute, Oxford: Music & Light Symbiosis no.3 - An Art Exhibition and a Light & Music Concert

Medea Bindewald & Katharine Beaugié
Further Information

An Art Exhibition and a Light & Music Concert

Katharine Beaugié - Light Sculpture
Medea Bindewald - Harpsichord
Curated by Balázs Szendrői

Concert: 18 November, 6.45pm followed by a reception
Exhibition: 18th November – 6th December 2019, Mon-Fri, 8am-6pm

Applied Pure is a unique collaboration between light sculptor Katharine Beaugié and international concert harpsichordist Medea Bindewald, combining the patterns made by water and light with the sound of harpsichord music in a mathematical environment.

Katharine Beaugié will also be exhibiting a new series of large-scale photograms (photographic shadows), displaying the patterns of the natural phenomena of human relationship with water and light.

The Programme of music for harpsichord and water includes the composers: Domenico Scarlatti (1685-1757), Johann Jakob Froberger (1616-1667), Enno Kastens (b 1967) and Johann Sebastian Bach (1685-1750).

For more information about the concert and exhibition which is FREE please click this link

Image of Drop | God 2018

[[{"fid":"56134","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"style":"height: 300px; width: 300px;","class":"media-element file-media-square","data-delta":"1"}}]]

Mon, 18 Nov 2019

16:00 - 17:00
C1

Erdős' primitive set conjecture

Jared Duker Lichtman
(Oxford)
Abstract

A subset of the integers larger than 1 is called $\textit{primitive}$ if no member divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ over $n$ in a primitive set $A$ is universally bounded for any choice of $A$. In 1988, he famously asked if this universal bound is attained by the set of prime numbers. In this talk we shall discuss some recent progress towards this conjecture and related results, drawing on ideas from analysis, probability, & combinatorics.

Mon, 18 Nov 2019

16:00 - 17:00
L4

Minimal surfaces, mean curvature flow and the Gibbons-Hawking ansatz

Jason Lotay
(Oxford)
Abstract

The Gibbons-Hawking ansatz is a powerful method for constructing a large family of hyperkaehler 4-manifolds (which are thus Ricci-flat), which appears in a variety of contexts in mathematics and theoretical physics. I will describe work in progress to understand the theory of minimal surfaces and mean curvature flow in these 4-manifolds. In particular, I will explain a proof of a version of the Thomas-Yau Conjecture in Lagrangian mean curvature flow in this setting. This is joint work with G. Oliveira.

Mon, 18 Nov 2019
15:45
L6

On the smooth mapping class group of the 4-sphere

David Gay
(University of Georgia/MPIM Bonn)
Abstract

The smooth mapping class group of the 4-sphere is pi_0 of the space of orientation preserving self-diffeomorphisms of S^4. At the moment we have no idea whether this group is trivial or not. Watanabe has shown that higher homotopy groups can be nontrivial. Inspired by Watanabe's constructions, we'll look for interesting self-diffeomorphisms of S^4. Most of the talk will be an outline for a program to find a nice geometric generating set for this mapping class group; a few small steps in the program are actually theorems. The point of finding generators is that if they are explicit enough then you have a hope of either showing that they are all trivial or finding an invariant that is well adapted to obstructing triviality of these generators.

Mon, 18 Nov 2019

15:45 - 16:45
L3

From discrete to continuous time models Some surprising news on an old topic

WALTER SCHACHERMAYER
(University of Vienna)
Abstract

We reconsider the approximations of the Black-Scholes model by discrete time models such as the binominal or the trinominal model.

We show that for continuous and bounded claims one may approximate the replication in the Black-Scholes model by trading in the discrete time models. The approximations holds true in measure as well as "with bounded risk", the latter assertion being the delicate issue. The remarkable aspect is that this result does not apply to the well-known binominal model, but to a much wider class of discrete approximating models, including, eg.,the trinominal model. by an example we show that we cannot do the approximation with "vanishing risk".

We apply this result to portfolio optimization and show that, for utility functions with "reasonable asymptotic elasticity" the solution to the discrete time portfolio optimization converge to their continuous limit, again in a wide class of discretizations including the trinominal model. In the absence of "reasonable asymptotic elasticity", however, surprising pathologies may occur.

Joint work with David Kreps (Stanford University)

Mon, 18 Nov 2019

14:15 - 15:15
L3

Distributionally Robust Portfolio Selection with Optimal Transport Costs

JOSE BLANCHET
(Stanford Unversity)
Abstract

We revisit portfolio selection models by considering a distributionally robust version, where the region of distributional uncertainty is around the empirical measure and the discrepancy between probability measures is dictated by optimal transport costs. In many cases, this problem can be simplified into an empirical risk minimization problem with a regularization term. Moreover, we extend a recently developed inference methodology in order to select the size of the distributional uncertainty in a data-driven way. Our formulations allow us to inform the distributional uncertainty region using market information (e.g. via implied volatilities). We provide substantial empirical tests that validate our approach.
(This presentation is based on the following papers: https://arxiv.org/pdf/1802.04885.pdf and https://arxiv.org/abs/1810.024….)

Mon, 18 Nov 2019
14:15
L4

Quantization through Morita equivalence

Francis Bischoff
(Oxford)
Abstract

In this talk I will discuss a new proposal for constructing quantizations of holomorphic Poisson structures, and generalized complex manifolds more generally, which is based on using the A model of an associated symplectic manifold known as a Morita equivalence. This construction will be illustrated through the example of toric Poisson structures.

 

Fri, 15 Nov 2019

16:00 - 17:00
L1

Wave localization and its landscape

Doug Arnold
(University of Minnesota)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

Abstract

The puzzling phenonenon of wave localization refers to unexpected confinement of waves triggered by disorder in the propagating medium. Localization arises in many physical and mathematical systems and has many important implications and applications. A particularly important case is the Schrödinger equation of quantum mechanics, for which the localization behavior is crucial to the electrical properties of materials. Mathematically it is tied to exponential decay of eigenfunctions of operators instead of their expected extension throughout the domain. Although localization has been studied by physicists and mathematicians for the better part of a century, many aspects remain mysterious. In particular, the sort of deterministic quantitative results needed to predict, control, and exploit localization have remained elusive. This talk will focus on major strides made in recent years based on the introduction of the landscape function and its partner, the effective potential. We will describe these developments from the viewpoint of a computational mathematician who sees the landscape theory as a completely unorthodox sort of a numerical method for computing spectra.

Fri, 15 Nov 2019

15:00 - 16:00
N3.12

The Topology of Brain cells

Nils Baas
(NTNU)
Abstract

In my talk I will discuss the use of topological methods in the analysis of neural data. I will show how to obtain good state spaces for Head Direction Cells and Grid Cells. Topological decoding shows how neural firing patterns determine behaviour. This is a local to global situation which gives rise to some reflections.

Fri, 15 Nov 2019

14:00 - 15:00
L1

What's it like to do a DPhil/research?

Abstract

This week's Fridays@2 will be a panel discussion focusing on what it is like to pursue a research degree. The panel will share their thoughts and experiences in a question-and-answer session, discussing some of the practicalities of being a postgraduate student, and where a research degree might lead afterwards. Participants include:

Jono Chetwynd-Diggle (Smith Institute)

Victoria Patel (PDE CDT, Mathematical Institute)

Robin Thompson (Christ Church)

Rosemary Walmsley (DPhil student Health Economics Research Centre, Oxford) 

Fri, 15 Nov 2019

14:00 - 15:00
L3

Emergent spatial patterning in engineered bacteria

Dr Neil Dalchau
(Microsoft Research Cambridge)
Abstract

The spatial coordination of cellular differentiation enables functional organogenesis. How coordination results in specific patterns of differentiation in a robust manner is a fundamental question for all developmental systems in biology. Theoreticians such as Turing and Wolpert have proposed the importance of specific mechanisms that enable certain types of patterns to emerge, but these mechanisms are often difficult to identify in natural systems. Therefore, we have started using synthetic biology to ask whether specific mechanisms of pattern formation can be engineered into a simple cellular background. In this talk, I will show several examples of emergent spatial patterning that results from the insertion of synthetic signalling pathways and transcriptional logic into E. coli. In all cases, we use computational modelling to initially design circuits with a desired outcome, and improve the selection of biological components (DNA sub-sequences) that achieve this outcome according to a quantifiable measure. In the specific case of Turing patterns, we have yet to produce a functional system in vivo, but I will describe new analytical tools that are helping to guide the design of synthetic circuits that can produce a Turing instability.

Fri, 15 Nov 2019

10:00 - 11:00
L3

Single molecule tracking, Metropolis-Hastings sampling and graphs

Michael Hirsch
(STFC)
Abstract

Optical super-resolution microscopy enables the observations of individual bio-molecules. The arrangement and dynamic behaviour of such molecules is studied to get insights into cellular processes which in turn lead to various application such as treatments for cancer diseases. STFC's Central Laser Facility provides (among other) public access to super-resolution microscope techniques via research grants. The access includes sample preparation, imaging facilities and data analysis support. Data analysis includes single molecule tracking algorithms that produce molecule traces or tracks from time series of molecule observations. While current algorithms are gradually getting away from "connecting the dots" and using probabilistic methods, they often fail to quantify the uncertainties in the results. We have developed a method that samples a probability distribution of tracking solutions using the Metropolis-Hastings algorithm. Such a method can produce likely alternative solutions together with uncertainties in the results. While the method works well for smaller data sets, it is still inefficient for the amount of data that is commonly collected with microscopes. Given the observations of the molecules, tracking solutions are discrete, which gives the proposal distribution of the sampler a peculiar form. In order for the sampler to work efficiently, the proposal density needs to be well designed. We will discuss the properties of tracking solutions and the problems of the proposal function design from the point of view of discrete mathematics, specifically in terms of graphs. Can mathematical theory help to design a efficient proposal function?

Thu, 14 Nov 2019

16:00 - 17:30
C5

Vertex algebras and the homology of moduli stacks

Jacob Gross
Abstract

Recently, Joyce constructed a Ringel-Hall style graded vertex algebra on the homology of moduli stacks of objects in certain categories of algebro-geometric and representation-theoretic origin. The construction is most natural for 2n-Calabi-Yau categories. We present this construction and explain the geometric reason why it exists. If time permits, we will explain how to compute the homology of the moduli stack of objects in the derived category of a smooth complex projective variety and to identify it with a lattice-type vertex algebra.

Thu, 14 Nov 2019

16:00 - 17:00
L4

Viscosity solutions for controlled McKean-Vlasov jump-diffusions

Matteo Burzoni
(Oxford University)
Abstract

We study a class of non linear integro-differential equations on the Wasserstein space related to the optimal control of McKean-Vlasov jump-diffusions. We develop an intrinsic notion of viscosity solutions that does not rely on the lifting to an Hilbert space and prove a comparison theorem for these solutions. We also show that the value function is the unique viscosity solution. Based on a joint work with V. Ignazio, M. Reppen and H. M. Soner

Thu, 14 Nov 2019
16:00
L6

Propinquity of divisors

Ben Green
(Oxford)
Abstract

Let n be a random integer (sampled from {1,..,X} for some large X). It is a classical fact that, typically, n will have around (log n)^{log 2} divisors. Must some of these be close together? Hooley's Delta function Delta(n) is the maximum, over all dyadic intervals I = [t,2t], of the number of divisors of n in I. I will report on joint work with Kevin Ford and Dimitris Koukoulopoulos where we conjecture that typically Delta(n) is about (log log n)^c for some c = 0.353.... given by an equation involving an exotic recurrence relation, and then prove (in some sense) half of this conjecture, establishing that Delta(n) is at least this big almost surely.

Thu, 14 Nov 2019

16:00 - 17:30
L3

Formation and Spatial Localization of Phase Field Quasicrystals

Priya Subramanian
(University of Oxford)
Abstract

The dynamics of many physical systems often evolve to asymptotic states that exhibit periodic spatial and temporal variations in their properties such as density, temperature, etc. Such regular patterns look the same when moved by a basic unit and/or rotated by certain special angles. They possess both translational and rotational symmetries giving rise to discrete spatial Fourier transforms. In contrast, an aperiodic crystal displays long range spatial order but no translational symmetry. 

Recently, quasicrystals which are related to aperiodic crystals have been observed to form in diverse physical systems such as metallic alloys (atomic scale) and dendritic-, star-, and block co-polymers (molecular scale). Such quasicrystals lack the lattice symmetries of regular crystals, yet have discrete Fourier spectra. We look to understand the minimal mechanism which promotes the formation of such quasicrystalline structures using a phase field crystal model. Direct numerical simulations combined with weakly nonlinear analysis highlight the parameter values where the quasicrystals are the global minimum energy state and help determine the phase diagram. 

By locating parameter values where multiple patterned states possess the same free energy (Maxwell points), we obtain states where a patch of one type of pattern (for example, a quasicrystal) is present in the background of another (for example, the homogeneous liquid state) in the form of spatially localized dodecagonal (in 2D) and icosahedral (in 3D) quasicrystals. In two dimensions, we compute several families of spatially localized quasicrystals with dodecagonal structure and investigate their properties as a function of the system parameters. The presence of such meta-stable localized quasicrystals is significant as they may affect the dynamics of the crystallisation in soft matter.

Thu, 14 Nov 2019

14:00 - 15:00
L4

On the preconditioning of coupled multi-physics problems

Massimiliano Ferronato
(University of Padua)
Abstract

The fully coupled numerical simulation of different physical processes, which can typically occur
at variable time and space scales, is often a very challenging task. A common feature of such models is that
their discretization gives rise to systems of linearized equations with an inherent block structure, which
reflects the properties of the set of governing PDEs. The efficient solution of a sequence of systems with
matrices in a block form is usually one of the most time- and memory-demanding issue in a coupled simulation.
This effort can be carried out by using either iteratively coupled schemes or monolithic approaches, which
tackle the problem of the system solution as a whole.

This talk aims to discuss recent advances in the monolithic solution of coupled multi-physics problems, with
application to poromechanical simulations in fractured porous media. The problem is addressed either by proper
sparse approximations of the Schur complements or special splittings that can partially uncouple the variables
related to different physical processes. The selected approaches can be included in a more general preconditioning
framework that can help accelerate the convergence of Krylov subspace solvers. The generalized preconditioner
relies on approximately decoupling the different processes, so as to address each single-physics problem
independently of the others. The objective is to provide an algebraic framework that can be employed as a
general ``black-box'' tool and can be regarded as a common starting point to be later specialized for the
particular multi-physics problem at hand.

Numerical experiments, taken from real-world examples of poromechanical problems and fractured media, are used to
investigate the behaviour and the performance of the proposed strategies.

Thu, 14 Nov 2019
13:00

Mathematics of communication

Head of Heilbronn Institute
(Heilbronn Institute)
Abstract

In the twentieth century we leant that the theory of communication is a mathematical theory. Mathematics is able to add to the value of data, for example by removing redundancy (compression) or increasing robustness (error correction). More famously mathematics can add value to data in the presence of an adversary which is my personal definition of cryptography. Cryptographers talk about properties of confidentiality, integrity, and authentication, though modern cryptography also facilitates transparency (distributed ledgers), plausible deniability (TrueCrypt), and anonymity (Tor).
Modern cryptography faces new design challenges as people demand more functionality from data. Some recent requirements include homomorphic encryption, efficient zero knowledge proofs for smart contracting, quantum resistant cryptography, and lightweight cryptography. I'll try and cover some of the motivations and methods for these.
 

Thu, 14 Nov 2019

12:00 - 13:00
L4

A parabolic toy-model for the Navier-Stokes equations

Francis Hounkpe
(Oxford University)
Abstract

In the seminar, I will talk about a parabolic toy-model for the incompressible Navier-Stokes equations, that satisfies the same energy inequality, same scaling symmetry and which is also super-critical in dimension 3. I will present some partial regularity results that this model shares with the incompressible model and other results that occur only for our model.

Wed, 13 Nov 2019

17:00 - 18:00

Oxford Mathematics Newcastle Public Lecture: Vicky Neale - ??????? in Maths?

Vicky Neale
(University of Oxford)
Further Information

[[{"fid":"55737","view_mode":"small_image_100px_h","fields":{"style":"height: 20px; width: 138px;","class":"media-element file-small-image-100px-h","data-delta":"1","format":"small_image_100px_h","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"style":"height: 20px; width: 138px;","class":"media-element file-small-image-100px-h","data-delta":"1","format":"small_image_100px_h","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"style":"height: 20px; width: 138px;","class":"media-element file-small-image-100px-h","data-delta":"1"}}]] in Maths?

Mathematics is the pursuit of truth. But it is a pursuit carried out by human beings with human emotions. Join Vicky as she travels the mathematical rollercoaster.

--

Oxford Mathematics is delighted to announce that in partnership with Northumbria University we shall be hosting our first Newcastle Public Lecture on 13 November. Everybody is welcome as we demonstrate the range, beauty and challenges of mathematics. Vicky Neale, Whitehead Lecturer here in Oxford, will be our speaker. Vicky has given a range of Public Lectures in Oxford and beyond and has made numerous radio and television appearances.

5.00pm-6.00pm
Northumbria University
Lecture Theatre 002, Business & Law Building, City Campus East
Newcastle upon Tyne, NE1 2SU

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/neale

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 13 Nov 2019
16:00
C1

Immersed surfaces in cubed three manifolds: a prescient vision.

Daniel Woodhouse
(University of Oxford)
Abstract

When Gromov defined non-positively curved cube complexes no one knew what they would be useful for.
Decades latex they played a key role in the resolution of the Virtual Haken conjecture.
In one of the early forays into experimenting with cube complexes, Aitchison, Matsumoto, and Rubinstein produced some nice results about certain "cubed" manifolds, that in retrospect look very prescient.
I will define non-positively curved cube complexes, what it means for a 3-manifold to be cubed, and discuss what all this Haken business is about.
 

Tue, 12 Nov 2019

15:30 - 16:30
L5

Re-Engineering History: A Playful Demonstration

Tom Ritchie
(University of Kent)
Abstract

This session will discuss how Douglas Hartree and Arthur Porter used Meccano — a child’s toy and an engineer’s tool — to build an analogue computer, the Hartree Differential Analyser in 1934. It will explore the wider historical and social context in which this model computer was rooted, before providing an opportunity to engage with the experiential aspects of the 'Kent Machine,' a historically reproduced version of Hartree and Porter's original model, which is also made from Meccano.

The 'Kent Machine' sits at a unique intersection of historical research and educational engagement, providing an alternative way of teaching STEM subjects, via a historic hands-on method. The session builds on the work and ideas expressed in Otto Sibum's reconstruction of James Joule's 'Paddle Wheel' apparatus, inviting attendees to physically re-enact the mathematical processes of mechanical integration to see how this type of analogue computer functioned in reality. The session will provide an alternative context of the history of computing by exploring the tacit knowledge that is required to reproduce and demonstrate the machine, and how it sits at the intersection between amateur and professional science.

Tue, 12 Nov 2019

15:30 - 16:30
L4

A motivic DT/PT correspondence via Quot schemes

Andrea T. Ricolfi
(SISSA)
Abstract

Donaldson-Thomas invariants of a Calabi-Yau 3-fold Y are related to Pandharipande-Thomas invariants via a wall-crossing formula known as the DT/PT correspondence, proved by Bridgeland and Toda. The same relation holds for the “local invariants”, those encoding the contribution of a fixed smooth curve in Y. We show how to lift the local DT/PT correspondence to the motivic level and provide an explicit formula for the local motivic invariants, exploiting the critical structure on certain Quot schemes acting as our local models. Our strategy is parallel to the one used by Behrend, Bryan and Szendroi in their definition and computation of degree zero motivic DT invariants. If time permits, we discuss a further (conjectural) cohomological upgrade of the local DT/PT correspondence.
Joint work with Ben Davison.
 

Tue, 12 Nov 2019
14:30
L5

Overview of a quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices

Estelle Massart
(UC Louvain)
Abstract

We describe the main geometric tools required to work on the manifold of fixed-rank symmetric positive-semidefinite matrices: we present expressions for the Riemannian logarithm and the injectivity radius, to complement the already known Riemannian exponential. This manifold is particularly relevant when dealing with low-rank approximations of large positive-(semi)definite matrices. The manifold is represented as a quotient of the set of full-rank rectangular matrices (endowed with the Euclidean metric) by the orthogonal group. Our results allow understanding the failure of some curve fitting algorithms, when the rank of the data is overestimated. We illustrate these observations on a dataset made of covariance matrices characterizing a wind field.

Tue, 12 Nov 2019

14:00 - 15:00
L6

Partition universality of G(n,p) for degenerate graphs

Julia Boettcher
(London School of Economics)
Further Information

The r-​colour size-​Ramsey number of a graph G is the minimum number of edges of a graph H such that any r-​colouring of the edges of H has a monochromatic G-​copy. Random graphs play an important role in the study of size-​Ramsey numbers. Using random graphs, we establish a new bound on the size-​Ramsey number of D-​degenerate graphs with bounded maximum degree.

In the talk I will summarise what is known about size-​Ramsey numbers, explain the connection to random graphs and their so-​called partition universality, and outline which methods we use in our proof.

Based on joint work with Peter Allen.  
 

Tue, 12 Nov 2019
14:00
L5

Computing multiple local minima of topology optimisation problems

Ioannis Papadopoulos
(Oxford)
Abstract

Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE and volume constraints. There are many formulations and we opt for the density approach which results in a PDE, volume and inequality constrained, non-convex, infinite-dimensional optimisation problem without a priori knowledge of a good initial guess. Such problems can exhibit many local minima or even no minima. In practice, heuristics are used to obtain the global minimum, but these can fail even in the simplest of cases. In this talk, we will present an algorithm that solves such problems and systematically discovers as many of these local minima as possible along the way.  

Tue, 12 Nov 2019

12:00 - 13:00
C1

Contagion maps for spreading dynamics and manifold learning

Barbara Mahler
(Mathematical Institute)
Abstract

Spreading processes on geometric networks are often influenced by a network’s underlying spatial structure, and it is insightful to study the extent to which a spreading process follows that structure. In particular, considering a threshold contagion on a network whose nodes are embedded in a manifold and which has both 'geometric edges' that respect the geometry of the underlying manifold, as well as 'non-geometric edges' that are not constrained by the geometry of the underlying manifold, one can ask whether the contagion propagates as a wave front along the underlying geometry, or jumps via long non-geometric edges to remote areas of the network. 
Taylor et al. developed a methodology aimed at determining the spreading behaviour of threshold contagion models on such 'noisy geometric networks' [1]. This methodology is inspired by nonlinear dimensionality reduction and is centred around a so-called 'contagion map' from the network’s nodes to a point cloud in high dimensional space. The structure of this point cloud reflects the spreading behaviour of the contagion. We apply this methodology to a family of noisy-geometric networks that can be construed as being embedded in a torus, and are able to identify a region in the parameter space where the contagion propagates predominantly via wave front propagation. This consolidates contagion map as both a tool for investigating spreading behaviour on spatial network, as well as a manifold learning technique. 
[1] D. Taylor, F. Klimm, H. A. Harrington, M. Kramar, K. Mischaikow, M. A. Porter, and P. J. Mucha. Topological data analysis of contagion maps for examining spreading processes on networks. Nature Communications, 6(7723) (2015)

Tue, 12 Nov 2019

12:00 - 13:15
L4

Dark Matter, Modified Gravity - Or What?

Sabine Hossenfelder
(Frankfurt Institute for Advanced Studies)
Abstract

In this talk I will explain (a) what observations speak for the
hypothesis of dark matter, (b) what observations speak for
the hypothesis of modified gravity, and (c) why it is a mistake
to insist that either hypothesis on its own must
explain all the available data. The right explanation, I will argue,
is instead a suitable combination of dark matter and modified
gravity, which can be realized by the idea that dark matter
has a superfluid phase.

Mon, 11 Nov 2019

16:00 - 17:00
C1

On Serre's Uniformity Conjecture

Jay Swar
(Oxford)
Abstract

Given a prime p and an elliptic curve E (say over Q), one can associate a "mod p Galois representation" of the absolute Galois group of Q by considering the natural action on p-torsion points of E.

In 1972, Serre showed that if the endomorphism ring of E is "minimal", then there exists a prime P(E) such that for all p>P(E), the mod p Galois representation is surjective. This raised an immediate question (now known as Serre's uniformity conjecture) on whether P(E) can be bounded as E ranges over elliptic curves over Q with minimal endomorphism rings.

I'll sketch a proof of this result, the current status of the conjecture, and (time permitting) some extensions of this result (e.g. to abelian varieties with appropriately analogous endomorphism rings).

Mon, 11 Nov 2019

16:00 - 17:00
L4

On some computable quasiconvex multiwell functions

Kewei Zhang
(University of Nottingham)
Abstract

The translation method for constructing quasiconvex lower bound of a given function in the calculus of variations and the notion of compensated convex transforms for tightly approximate functions in Euclidean spaces will be briefly reviewed. By applying the upper compensated convex transform to the finite maximum function we will construct computable quasiconvex functions with finitely many point wells contained in a subspace with rank-one matrices. The complexity for evaluating the constructed quasiconvex functions is O(k log k) with k the number of wells involved. If time allows, some new applications of compensated convexity will be briefly discussed.

Mon, 11 Nov 2019
15:45
L6

The Witt vectors with coefficients

Emanuele Dotto
(University of Warwick)
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Mon, 11 Nov 2019

15:45 - 16:45
L3

On a probabilistic interpretation of the parabolic-parabolic Keller Segel equations

MILICA TOMASEVIC
(Ecole Polytechnique Paris)
Abstract

The Keller Segel model for chemotaxis is a two-dimensional system of parabolic or elliptic PDEs.
Motivated by the study of the fully parabolic model using probabilistic methods, we give rise to a non linear SDE of McKean-Vlasov type with a highly non standard and singular interaction. Indeed, the drift of the equation involves all the past of one dimensional time marginal distributions of the process in a singular way. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: at each time each particle interacts with all the past of the other ones by means of a highly singular space-time kernel.

In this talk, we will analyse the above probabilistic interpretation in $d=1$ and $d=2$.