Tue, 21 Jan 2020

12:00 - 13:00
C1

Generative models and representational learning on street networks

Mateo Neira
(University College London)
Abstract

Cities are now central to addressing global changes, ranging from climate change to economic resilience. There is a growing concern of how to measure and quantify urban phenomena, and one of the biggest challenges in quantifying different aspects of cities and creating meaningful indicators lie in our ability to extract relevant features that characterize the topological and spatial patterns of urban form. Many different models that can reproduce large-scale statistical properties observed in systems of streets have been proposed, from spatial random graphs to economical models of network growth. However, existing models fail to capture the diversity observed in street networks around the world. The increased availability of street network datasets and advancements in deep learning models present a new opportunity to create more accurate and flexible models of urban street networks, as well as capture important characteristics that could be used in downstream tasks.  We propose a simple approach called Convolutional-PCA (ConvPCA) for both creating low-dimensional representations of street networks that can be used for street network classification and other downstream tasks, as well as a generating new street networks that preserve visual and statistical similarity to observed street networks.

Link to the preprint

Mon, 20 Jan 2020

16:00 - 17:00

The Morse index of Willmore spheres and its relation to the geometry of minimal surfaces

Elena Maeder-Baumdicker
(TU Darmstadt)
Abstract

I will explain what the Willmore Morse Index of unbranched Willmore spheres in Euclidean three-space is and how to compute it. It turns out that several geometric properties at the ends of complete minimal surfaces with embedded planar ends are related to the mentioned Morse index.
One consequence of that computation is that all unbranched Willmore spheres are unstable (except for the round sphere). This talk is based on work with Jonas Hirsch.

 

Mon, 20 Jan 2020
15:45
L6

Algorithms for infinite linear groups: methods and applications

Alla Detinko
(Mathematics Dept., University of Hull)
Abstract

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields.  We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

Mon, 20 Jan 2020

15:45 - 16:45
L3

Recent developments in random geometry

JEAN-FRANCOIS LE GALL
(Universite Paris-Sud)
Abstract

We discuss the models of random geometry that are derived
from scaling limits of large graphs embedded in the sphere and
chosen uniformly at random in a suitable class. The case of
quadrangulations with a boundary leads to the so-called
Brownian disk, which has been studied in a number of recent works.
We present a new construction of the Brownian
disk from excursion theory for Brownian motion indexed
by the Brownian tree. We also explain how the structure
of connected components of the Brownian disk above a
given height gives rise to a remarkable connection with
growth-fragmentation processes.

Mon, 20 Jan 2020

14:15 - 15:15
L3

A new family of one-dimensional martingale couplings

BENJAMIN JOURDAIN
(ENPC FRANCE)
Abstract

We exhibit a new martingale coupling between two probability measures $\mu$ and $\nu$ in convex order on the real line. This coupling is explicit in terms of the integrals of the positive and negative parts of the difference between the quantile functions of $\mu$ and $\nu$. The integral of $|y-x|$ with respect to this coupling is smaller than twice the Wasserstein distance with index one between $\mu$ and $\nu$. When the comonotonous coupling between $\mu$ and $\nu$ is given by a map $T$, it minimizes the integral of $|y-T(x)|$ among all martingales coupling.

(joint work with William Margheriti)

Mon, 20 Jan 2020

14:15 - 15:15
L4

Symplectic geometry of Conical Symplectic Resolutions

Filip Zivanovic
(Oxford)
Abstract

Conical Symplectic Resolutions form a broad family of holomorphic symplectic manifolds that are of interest to mathematical physicists, algebraic geometers, and representation theorists; Nakajima Quiver Varieties and Hypertoric Varieties are known as their special cases. In this talk, I will be focused on the Symplectic Geometry of Conical Symplectic Resolutions, and its non-symplectic applications. More precisely, I will talk about my work on finding Exact Lagrangian Submanifolds inside CSRs, and work in progress (joint with Alexander Ritter) about the construction of Symplectic Cohomology on CSRs.

 

Thu, 16 Jan 2020

16:00 - 17:00
L4

PRICING OF COUNTERPARTY RISK AND FUNDING WITH CSA DISCOUNTING, PORTFOLIO EFFECTS AND INITIAL MARGIN.

Alessandro Gnoatto
(Universita degli studi di Verona)
Abstract


In this paper we extend the existing literature on xVA along three directions. First, we enhance current BSDE-based xVA frameworks to include initial margin by following the approach of Crépey (2015a) and Crépey (2015b). Next, we solve the consistency problem that arises when the front- office desk of the bank uses trade-specific discount curves that differ from the discount curve adopted by the xVA desk. Finally, we address the existence of multiple aggregation levels for contingent claims in the portfolio between the bank and the counterparty, providing suitable extensions of our proposed single-claim xVA framework. 

This is a joint work with: Francesca Biagini and Immacolata Oliva

Preprint available at: https://arxiv.org/abs/1905.11328

Wed, 15 Jan 2020

14:00 - 15:00
L3

Curve counting via stable objects in derived categories of Calabi-Yau 4-folds

Yalong Cao
(IPMU Tokyo)
Further Information

In a joint work with Davesh Maulik and Yukinobu Toda, we proposed a conjectural Gopakumar-Vafa type formula for the generating series of stable pair invariants on Calabi-Yau 4-folds. In this talk, I will present the recent joint work with Yukinobu Toda on how to give an interpretation of the above GV type formula in terms of wall-crossing phenomena in the derived category of coherent sheaves. 

Tue, 14 Jan 2020
16:00
C3

Structure theory for groupoid C*-algebras

Christian Bonicke
(University of Glasgow)
Abstract

C*-algebras constructed from topological groupoids allow us to study many interesting and a priori very different constructions
of C*-algebras in a common framework. Moreover, they are general enough to appear intrinsically in the theory. In particular, it was recently shown
by Xin Li that all C*-algebras falling within the scope of the classification program admit (twisted) groupoid models.
In this talk I will give a gentle introduction to this class of C*-algebras and discuss some of their structural properties, which appear in connection
with the classification program.
 

Fri, 10 Jan 2020
15:45
L6

TBA

Christian Blanchet
(Institut de Mathématiques de Jussieu (Paris 7))
Tue, 17 Dec 2019

15:30 - 16:30
L6

The distribution of traces of powers of matrices over finite fields

Brad Rodgers
(Queen's University)
Abstract

Consider a random N by N unitary matrix chosen according to Haar measure. A classical result of Diaconis and Shashahani shows that traces of low powers of this matrix tend in distribution to independent centered gaussians as N grows. A result of Johansson shows that this convergence is very fast -- superexponential in fact. Similar results hold for other classical compact groups. This talk will discuss analogues of these results for N by N matrices taken from a classical group over a finite field, showing that as N grows, traces of powers of these matrices equidistribute superexponentially. A little surprisingly, the proof is connected to the distribution in short intervals of certain arithmetic functions in F_q[T]. This is joint work with O. Gorodetsky.

Fri, 13 Dec 2019

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Jonathan Grant Peters, Victor Wang, James Morrill, Lingyi Yang
(Mathematical Institute)
Thu, 12 Dec 2019

12:00 - 13:30
L3

Analysis and computations of a nonlocal thin film model for two-fluid shear driven flows

Professor Saleh Tanveer
(Ohio State University)
Abstract


We present analysis and computations of a non-local thin film model developed by Kalogirou et al (2016) for a perturbed two-layer Couette flow when the thickness of the more viscous fluid layer next to the stationary wall is small compared to the thickness of the less viscous fluid. Travelling wave solutions and their stability are determined numerically, and secondary bifurcation points identified in the process. We also determine regions in parameter space where bistability is observed with two branches being linearly stable at the same time. The travelling wave solutions are mathematically justified through a quasi-solution analysis in a neighbourhood of an empirically constructed approximate solution. This relies in part on precise asymptotics of integrals of Airy functions for large wave numbers. The primary bifurcation about the trivial state is shown rigorously to be supercritical, and the dependence of bifurcation points, as a function of Reynolds number R and the primary wavelength 2πν−1/2 of the disturbance, is determined analytically. We also present recent results on time periodic solutions arising from Hoof-Bifurcation of the primary solution branch.


(This work is in collaboration with D. Papageorgiou & E. Oliveira ) 
 

Thu, 12 Dec 2019

10:00 - 16:30
L5

LMS Applied Algebra and Geometry seminar

Various
Further Information

[[{"fid":"56979","view_mode":"media_portrait_large","fields":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-portrait-large","data-delta":"1"}}]]

Tue, 10 Dec 2019

17:00 - 18:00
L1

Oxford Mathematics Christmas Public Lecture: Chris Budd - Why does Rudolf have a shiny nose?

Chris Budd
(University of Bath)
Further Information

For our popular Christmas lecture this year Chris Budd will give a seasonal talk with a number of light hearted applications of mathematics to the
festive season. 

Chris is currently Professor of Applied Mathematics at the University of Bath, and Professor of Geometry at Gresham College. He is a passionate populariser of mathematics and was awarded an OBE in 2015 for services to science and maths education.

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Budd

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 10 Dec 2019

12:00 - 13:00
C1

Relationship between ideology and language in the Catalan independence context

Samuel Martin-Gutierrez
(Universidad Politécnica de Madrid)
Abstract

Political polarization generates strong effects on society, driving controversial debates and influencing the institutions. Territorial disputes are one of the most important polarized scenarios and have been consistently related to the use of language. In this work, we analyzed the opinion and language distributions of a particular territorial dispute around the independence of the Spanish region of Catalonia through Twitter data. We infer a continuous opinion distribution by applying a model based on retweet interactions, previously selecting a seed of elite users with fixed and antagonist opinions. The resulting distribution presents a mainly bimodal behavior with an intermediate third pole that appears spontaneously showing a less polarized society with the presence of not only antagonist opinions. We find that the more active, engaged and influential users hold more extreme positions. Also we prove that there is a clear relationship between political positions and the use of language, showing that against independence users speak mainly Spanish while pro-independence users speak Catalan and Spanish almost indistinctly. However, the third pole, closer in political opinion to the pro-independence pole, behaves similarly to the against-independence one concerning the use of language.

Ref: https://www.nature.com/articles/s41598-019-53404-x



 

Tue, 10 Dec 2019 09:00 -
Tue, 31 Mar 2020 18:00
South Mezz Circulation

The Penrose Proofs: an exhibition of Roger Penrose’s Scientific Drawings 1-6

Roger Penrose
(University of Oxford)
Further Information

As you might expect from a man whose family included the Surrealist artist Roland Penrose, Roger Penrose has always thought visually. That thinking is captured brilliantly in this selection of Roger’s drawings that he produced for his published works and papers.

From quasi-symmetric patterns to graphic illustrations of the paradoxical three versions of reality via twistor theory and the brain, this selection captures the stunning range of Roger’s scientific work and the visual thinking that inspires and describes it.

Mezzanine Level
Mathematical Institute
Oxford

10 December 2019- 31 March 2020

[[{"fid":"56998","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Mon, 09 Dec 2019

16:00 - 17:00
C1

TBA

Alyosha Latyntsev
(Oxford)
Mon, 09 Dec 2019

15:45 - 16:45
L3

Ito-Wentzell-Lions formula for measure dependent random fields under full and conditional measure flows

GONCALO DOS REIS
(University of Edinburgh)
Abstract


We present several Itô-Wentzell formulae on Wiener spaces for real-valued functionals random field of Itô type depending on measures. We distinguish the full- and marginal-measure flow cases. Derivatives with respect to the measure components are understood in the sense of Lions.
This talk is based on joint work with V. Platonov (U. of Edinburgh), see https://arxiv.org/abs/1910.01892.
 

Mon, 09 Dec 2019

14:15 - 15:45
L3

Low-dimensional quantum Yang-Mills measures

ILYA CHEVYREV
(University of Oxford)
Abstract

Yang-Mills theory plays an important role in the Standard Model and is behind many mathematical developments in geometric analysis. In this talk, I will present several recent results on the problem of constructing quantum Yang-Mills measures in 2 and 3 dimensions. I will particularly speak about a representation of the 2D measure as a random distributional connection and as the invariant measure of a Markov process arising from stochastic quantisation. I will also discuss the relationship with previous constructions of Driver, Sengupta, and Lévy based on random holonomies, and the difficulties in passing from 2 to 3 dimensions. Partly based on joint work with Ajay Chandra, Martin Hairer, and Hao Shen.

Fri, 06 Dec 2019

16:00 - 17:00
L1

Linking mathematics to industry

Abstract

Dr Rachel Philip will discuss her experiences working at the interface between academic mathematics and industry. Oxford University Innovation will discuss how they can help academics when interacting with industry. 

Fri, 06 Dec 2019

15:00 - 16:00
N3.12

Measuring the stability of Mapper type algorithms

Matt Burfitt
(University of Southampton)
Abstract

The goal of topological data analysis is to apply tools form algebraic topology to reveal geometric structures hidden within high dimensional data. Mapper is among its most widely and successfully applied tools providing, a framework for the geometric analysis of point cloud data. Given a number of input parameters, the Mapper algorithm constructs a graph, giving rise to a visual representation of the structure of the data.  The Mapper graph is a topological representation, where the placement of individual vertices and edges is not important, while geometric features such as loops and flares are revealed.

 

However, Mappers method is rather ad hoc, and would therefore benefit from a formal approach governing how to make the necessary choices. In this talk I will present joint work with Francisco Belchì, Jacek Brodzki, and Mahesan Niranjan. We study how sensitive to perturbations of the data the graph returned by the Mapper algorithm is given a particular tuning of parameters and how this depend on the choice of those parameters. Treating Mapper as a clustering generalisation, we develop a notion of instability of Mapper and study how it is affected by the choices. In particular, we obtain concrete reasons for high values of Mapper instability and experimentally demonstrate how Mapper instability can be used to determine good Mapper outputs.

 

Our approach tackles directly the inherent instability of the choice of clustering procedure and requires very few assumption on the specifics of the data or chosen Mapper construction, making it applicable to any Mapper-type algorithm.

Fri, 06 Dec 2019

14:00 - 15:00
L6

From red to white: The time-varying nature of oceanic heat flux in the Arctic

Srikanth Toppaladoddi
(University of Oxford)
Abstract

Arctic sea ice is one of the most sensitive components of the Earth’s climate system. The underlying ocean plays an important role in the evolution of the ice cover through its heat flux at the ice-ocean interface. Despite its importance, the spatio-temporal variations of this heat flux are not well understood. In this talk, I will take the following approach to study the variations in the heat flux. First, I will consider the problem of classical Rayleigh-Bénard convection and systematically explore the effects of fractal boundaries on heat transport using direct numerical simulations. And second, I will analyze time-series data from the Surface Heat Budget of the Arctic Ocean (SHEBA) program using Multifractal Detrended Fluctuation Analysis (MFDFA) to understand the nature of fluctuations in the heat flux. I will also discuss developing simple stochastic ODEs using results from these studies.

Fri, 06 Dec 2019

14:00 - 15:00
South Mezz Circulation

Working together: end-of-term mathematical board games

Abstract

Would you like to meet some of your fellow students, and some graduate students and postdocs, in an informal and relaxed atmosphere, while building your communication skills?  In this Friday@2 session, you'll be able to play a selection of board games, meet new people, and practise working together.  What better way to spend the final Friday afternoon of term?!  We'll play the games in the south Mezzanine area of the Andrew Wiles Building, outside L3.

Fri, 06 Dec 2019

10:00 - 11:00
L3

Generative design challenges in natural flood management

Steve Walker
(Arup)
Abstract

This challenge relates to problems (of a mathematical nature) in generating optimal solutions for natural flood management.  Natural flood management involves large numbers of small scale interventions in a much larger context through exploiting natural features in place of, for example, large civil engineering construction works. There is an optimisation problem related to the catchment hydrology and present methods use several unsatisfactory simplifications and assumptions that we would like to improve on.

Thu, 05 Dec 2019
16:00
L6

On the negative Pell equation

Stephanie Chan
(UCL)
Abstract

Stevenhagen conjectured that the density of d such that the negative Pell equation x^2-dy^2=-1 is solvable over the integers is 58.1% (to the nearest tenth of a percent), in the set of positive squarefree integers having no prime factors congruent to 3 modulo 4. In joint work with Peter Koymans, Djordjo Milovic, and Carlo Pagano, we use a recent breakthrough of Smith to prove that the infimum of this density is at least 53.8%, improving previous results of Fouvry and Klüners, by studying the distribution of the 8-rank of narrow class groups of quadratic number fields.

Thu, 05 Dec 2019

16:00 - 17:30
L3

Revisiting a selection problem for Taylor-Saffman bubbles in Hele-Shaw flow

Scott Mccue
(Queensland University of Technology)
Abstract

The problem of a bubble moving steadily in a Hele-Shaw cell goes back to Taylor and Saffman in 1959.  It is analogous to the well-known selection problem for Saffman-Taylor fingers in a Hele-Shaw channel.   We apply techniques in exponential asymptotics to study the bubble problem in the limit of vanishing surface tension, confirming previous numerical results, including a previously predicted surface tension scaling law.  Our analysis sheds light on the multiple tips in the shape of the bubbles along solution branches, which appear to be caused by switching on and off exponentially small wavelike contributions across Stokes lines in a conformally mapped plane. 

Thu, 05 Dec 2019

14:00 - 15:00
C4

Algebraic K-theory

Nadav Gropper
Abstract

In the talk we will define higher K-groups, and explain some of their relations to number theory

Thu, 05 Dec 2019

12:00 - 13:00
L2

Hölder regularity for nonlocal double phase equations

Giampiero Palatucci
(Università di Parma)
Abstract

We present some regularity estimates for viscosity solutions to a class of possible degenerate and singular integro-differential equations whose leading operator switches between two different types of fractional elliptic phases, according to the zero set of a modulating coefficient a = a(·, ·). The model case is driven by the following nonlocal double phase operator,

$$\int \frac{|u(x) − u(y)|^{p−2} (u(x) − u(y))} {|x − y|^{n+sp}} dy+ \int a(x, y) \frac{|u(x) − u(y)|^{ q−2} (u(x) − u(y))} {|x − y|^{n+tq}} dy$$

where $q ≥ p$ and $a(·, ·) = 0$. Our results do also apply for inhomogeneous equations, for very general classes of measurable kernels. By simply assuming the boundedness of the modulating coefficient, we are able to prove that the solutions are Hölder continuous, whereas similar sharp results for the classical local case do require a to be Hölder continuous. To our knowledge, this is the first (regularity) result for nonlocal double phase problems.

Thu, 05 Dec 2019

11:30 - 12:30
C4

Universally defining finitely generated subrings of global fields

Nicolas Daans
(Antwerpen)
Abstract

   It is a long-standing open problem whether the ring of integers Z has an existential first-order definition in Q, the field of rational numbers. A few years ago, Jochen Koenigsmann proved that Z has a universal first-order definition in Q, building on earlier work by Bjorn Poonen. This result was later generalised to number fields by Jennifer Park and to global function fields of odd characteristic by Kirsten Eisenträger and Travis Morrison, who used classical machinery from number theory and class field theory related to the behaviour of quaternion algebras over global and local fields.


   In this talk, I will sketch a variation on the techniques used to obtain the aforementioned results. It allows for a relatively short and uniform treatment of global fields of all characteristics that is significantly less dependent on class field theory. Instead, a central role is played by Hilbert's Reciprocity Law for quaternion algebras. I will conclude with an example of a non-global set-up where the existence of a reciprocity law similarly yields universal definitions of certain subrings.

Wed, 04 Dec 2019
16:00
C1

Double branched cover of knotoids, f-distance and entanglement in proteins.

Agnese Barbensi
(University of Oxford)
Abstract

Knotoids are a generalisation of knots that deals with open curves. In the past few years, they’ve been extensively used to classify entanglement in proteins. Through a double branched cover construction, we prove a 1-1 correspondence between knotoids and strongly invertible knots. We characterise forbidden moves between knotoids in terms of equivariant band attachments between strongly invertible knots, and in terms of crossing changes between theta-curves. Finally, we present some applications to the study of the topology of proteins. This is based on joint works with D.Buck, H.A.Harrington, M.Lackenby and with D. Goundaroulis.

Wed, 04 Dec 2019
11:00
N3.12

Random Groups

David Hume
(University of Oxford)
Abstract

Finitely presented groups are a natural algebraic generalisation of the collection of finite groups. Unlike the finite case there is almost no hope of any kind of classification.

The goal of random groups is therefore to understand the properties of the "typical" finitely presented group. I will present a couple of models for random groups and survey some of the main theorems and open questions in the area, demonstrating surprising correlations between these probabilistic models, geometry and analysis.

Tue, 03 Dec 2019

15:45 - 16:45
L4

Combinatorial Lefschetz theorems beyond positivity

Karim Adiprasito
(Hebrew University)
Abstract

The hard Lefschetz theorem is a fundamental statement about the symmetry of the cohomology of algebraic varieties. In nearly all cases that we systematically understand it, it comes with a geometric meaning, often in form of Hodge structures and signature data for the Hodge-Riemann bilinear form.

Nevertheless, similar to the role the standard conjectures play in number theory, several intriguing combinatorial problems can be reduced to hard Lefschetz properties, though in extreme cases without much geometric meaning, lacking any existence of, for instance,  an ample cone to do Hodge theory with.

I will present a way to prove the hard Lefschetz theorem in such a situation, by introducing biased pairing and perturbation theory for intersection rings. The price we pay is that the underlying variety, in a precise sense, has itself to be sufficiently generic. For instance, we shall see that any quasismooth, but perhaps nonprojective toric variety can be "perturbed" to a toric variety with the same equivariant cohomology, and that has the hard Lefschetz property.

Finally, I will discuss how this applies to prove some interesting theorems in geometry, topology and combinatorics. In particular, we shall see a generalization of a classical result due to Descartes and Euler: We prove that if a simplicial complex embeds into euclidean 2d-space, the number of d-simplices in it can exceed the number of (d-1)-simplices by a factor of at most d+2.

Tue, 03 Dec 2019
14:30
L1

Estimation of ODE models with discretization error quantification

Takeru Matsuda
(University of Tokyo)
Abstract

We consider estimation of ordinary differential equation (ODE) models from noisy observations. For this problem, one conventional approach is to fit numerical solutions (e.g., Euler, Runge–Kutta) of ODEs to data. However, such a method does not account for the discretization error in numerical solutions and has limited estimation accuracy. In this study, we develop an estimation method that quantifies the discretization error based on data. The key idea is to model the discretization error as random variables and estimate their variance simultaneously with the ODE parameter. The proposed method has the form of iteratively reweighted least squares, where the discretization error variance is updated with the isotonic regression algorithm and the ODE parameter is updated by solving a weighted least squares problem using the adjoint system. Experimental results demonstrate that the proposed method improves estimation accuracy by accounting for the discretization error in a data-driven manner. This is a joint work with Yuto Miyatake (Osaka University).

Tue, 03 Dec 2019
14:15
L4

Deformation of a Howe duality

Marcelo De Martino
(Oxford University)
Abstract

In this talk, I will report about a joint work with D. Ciubotaru, in which we investigate the Dunkl version of the classical Howe-duality (O(k),spo(2|2)). Similar Fischer-type decompositions were studied before in the works of Ben-Said, Brackx, De Bie, De Schepper, Eelbode, Orsted, Soucek and Somberg for other Howe-dual pairs. Our work builds on the notion of a Dirac operator for Drinfeld algebras introduced by Ciubotaru, which was inspired by the analogous theory for Lie algebras, as well as the work of Cheng and Wang on classical Howe dualities.

Tue, 03 Dec 2019

14:00 - 15:00
L6

Characterisation of quasirandom permutations by a pattern sum

Yanitsa Pehova
(University of Warwick)
Further Information

We say that a sequence $\{\Pi_i\}$ of permutations is quasirandom if, for each $k\geq 2$ and each $\sigma\in S_k$, the probability that a uniformly chosen $k$-set of entries of $\Pi_i$ induces $\sigma$ tends to $1/k!$ as $i$ tends to infinity. It is known that a much weaker condition already forces $\{\Pi_i\}$ to be quasirandom; namely, if the above property holds for all $\sigma\in S_4$. We further weaken this condition by exhibiting sets $S\subseteq S_4$, such that if a randomly chosen $k$-set of entries of $\Pi_i$ induces an element of $S$ with probability tending to $|S|/24$, then $\{\Pi_i\}$ is quasirandom. Moreover, we are able to completely characterise the sets $S$ with this property. In particular, there are exactly ten such sets, the smallest of which has cardinality eight. 
This is joint work with Timothy Chan, Daniel Kráľ, Jon Noel, Maryam Sharifzadeh and Jan Volec.

Tue, 03 Dec 2019
14:00
L1

On symmetrizing the ultraspherical spectral method for self-adjoint problems

Mikael Slevinsky
(University of Manitoba)
Abstract

A mechanism is described to symmetrize the ultraspherical spectral method for self-adjoint problems. The resulting discretizations are symmetric and banded. An algorithm is presented for an adaptive spectral decomposition of self-adjoint operators. Several applications are explored to demonstrate the properties of the symmetrizer and the adaptive spectral decomposition.

 

Tue, 03 Dec 2019

12:45 - 14:00
C5

Computing multiple local minima of topology optimization problems with second-order methods

Ioannis Papadopoulos
(Oxford University)
Abstract


Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE and volume constraints. There are many formulations and we opt for the density approach which results in a PDE, volume and inequality constrained, non-convex, infinite-dimensional optimisation problem without a priori knowledge of a good initial guess. Such problems can exhibit many local minima or even no minima. In practice, heuristics are used to obtain the global minimum, but these can fail even in the simplest of cases. In this talk, we will present an algorithm that solves such problems and systematically discovers as many of these local minima as possible along the way.

Tue, 03 Dec 2019
12:00
L4

Lie polynomials and a Penrose transform for the double copy

Lionel Mason
(Oxford)
Abstract

This talk will explain how Lie polynomials underpin the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides).  ABHY have recently shown that Lie polynomials arise naturally also in the geometry of the space K_n of momentum invariants, Mandelstams, and can be expressed in the space of n-3-forms dual to certain associahedral (n-3)-planes. They also arise in the moduli space M_{0,n} of n points on a Riemann sphere up to Mobius transformations in the n-3-dimensional homology.  The talk goes on to give a natural correspondendence between K_n and the cotangent bundle of M_{0.n} through which the relationships of some of these structures can be expressed.  This in particular gives a natural framework for expressing the CHY and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories and goes some way to expressing their double copy relations.   This is part of joint work in progress with Hadleigh Frost.

Tue, 03 Dec 2019

12:00 - 13:00
C1

Network construction methodology based on distance correlation without exogenous information

Javier Pardo Díaz
(Department of Statistics)
Abstract

We aim to generate gene coexpression networks from gene expression data. In our networks, nodes represent genes and edges depict high positive correlation in their expression across different samples. Methods based on Pearson correlation are the most commonly used to generate gene coexpression networks. We propose the use of distance correlation as an effective alternative to Pearson correlation when constructing gene expression networks. Our methodology pipeline includes a thresholding step which allows us to discriminate which pairs of genes are coexpressed. We select the value of the threshold parameter by studying the stability of the generated network, rather than relying on exogenous biological information known a priori.

Tue, 03 Dec 2019

11:00 - 12:00
L6

Babbage's mechanical notation

Adrian Johnstone
(Royal Holloway University of London)
Abstract

Charles Babbage (1791–1871) was Lucasian Professor of mathematics in Cambridge from 1828–1839. He displayed a fertile curiosity that led him to study many contemporary processes and problems in a way which emphasised an analytic, data driven view of life.

In popular culture Babbage has been celebrated as an anachronistic Victorian engineer. In reality, Babbage is best understood as a figure rooted in the enlightenment, who had substantially completed his core investigations into 'mechanisation of thought' by the mid 1830s: he is thus an anachronistic Georgian: the construction of his first difference engine design is contemporary with the earliest public railways in Britain.

A fundamental question that must strike anybody who examines Babbage's precocious designs is: how could one individual working alone have synthesised a workable computer design, designing an object whose complexity of behaviour so far exceeded that of contemporary machines that it would not be matched for over a hundred years?

We shall explore the extent to which the answer lies in the techniques Babbage developed to reason about complex systems. His Notation which shows the geometry, timing, causal chains and the abstract components of his machines, has a direct parallel in the Hardware Description Languages developed since 1975 to aid the design of large scale electronics. In this presentation, we shall provide a basic tutorial on Babbage's notation showing how his concepts of 'pieces' and 'working points' effectively build a graph in which both parts and their interactions are represented by nodes, with edges between part-nodes and interaction-nodes denoting ownership, and edges between interaction-nodes denoting the transmission of forces between individual assemblies within a machine. We shall give examples from Babbage's Difference Engine 2 for which a complete set of notations was drawn in 1849, and compare them to a design of similar complexity specified in 1987 using the Inmos HDL.

Mon, 02 Dec 2019

17:30 - 18:30
L1

Carlo Rovelli - Spin networks: the quantum structure of spacetime from Penrose's intuition to Loop Quantum Gravity

Carlo Rovelli
(Université d'Aix-Marseille)
Further Information

Oxford Mathematics Public Lectures- The Roger Penrose Lecture

Carlo Rovelli  - Spin networks: the quantum structure of spacetime from Penrose's intuition to Loop Quantum Gravity

Monday 2 December 2019

In developing the mathematical description of quantum spacetime, Loop Quantum Gravity stumbled upon a curious mathematical structure: graphs labelled by spins. This turned out to be precisely the structure of quantum space suggested by Roger Penrose two decades earlier, just on the basis of his intuition. Today these graphs with spin, called "spin networks" have become a common tool to explore the quantum properties of gravity. In this talk Carlo will tell this beautiful story and illustrate the current role of spin networks in the efforts to understand quantum gravity.

Carlo Rovelli is a Professor in the Centre de Physique Théorique de Luminy of Aix-Marseille Université where he works mainly in the field of quantum gravity and  is a founder of loop quantum gravity theory. His popular-science book 'Seven Brief Lessons on Physics' has been translated into 41 languages and has sold over a million copies worldwide.

5.30pm-6.30pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/rovelli

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Mon, 02 Dec 2019

16:00 - 17:00
C1

What the L! The surprising world of L-functions

George Robinson
(Oxford)
Abstract

L-functions have become a vital part of modern number theory over the past century, allowing comparisons between arithmetic objects with seemingly very different properties. In the first part of this talk, I will give an overview of where they arise, their properties, and the mathematics that has developed in order to understand them. In the second part, I will give a sketch of the beautiful result of Herbrand-Ribet concerning the arithmetic interpretations of certain special values of the Riemann zeta function, the prototypical example of an L-function.

Mon, 02 Dec 2019

16:00 - 17:00
L4

Dislocation patterns at zero and finite temperature in the Ariza-Ortiz model

Florian Theil
(Warwick)
Abstract


The AO-model describes crystalline solids in the presence of defects like dislocation lines. We demonstrate that the model supports low-energy structures like grains and determine for simple geometries the grain boundary energy density. At small misorientation angles we recover the well-known Read-Shockley law. Due to the atomistic nature of the model it is possible to consider the the Boltzmann-Gibbs distribution at non-zero temperature. Using ideas by Froehlich and Spencer we prove rigorously the presence of long-range order if the temperature is sufficiently small.
 

Mon, 02 Dec 2019

15:45 - 16:45
L3

Areas-of-areas on Hall trees generate the shuffle algebra

CRIS SALVI
(University of Oxford)
Abstract

We consider the coordinate-iterated-integral as an algebraic product on the shuffle algebra, called the (right) half-shuffle product. Its anti-symmetrization defines the biproduct  area(.,.), interpretable as the signed-area between two real-valued coordinate paths. We consider specific sets of binary, rooted trees known as Hall sets. These set have a complex combinatorial structure, which can be almost entirely circumvented by introducing the equivalent notion of Lazard sets. Using analytic results from dynamical systems and algebraic results from the theory of Lie algebras, we show that shuffle-polynomials in areas-of-areas on Hall trees generate the shuffle algebra.