Mon, 27 Jan 2020

15:45 - 16:45
L3

A stochastic population model with rough selection

TOMMASO CONELIS ROSATI
(TU Berlin)
Abstract

"We consider a spatial Lambda-Fleming-Viot process, a model in mathematical biology, with a randomly chosen (rough) selection field. We study the scaling limit of this process in different regimes. This leads to the analysis of semi-discrete approximations of singular SPDEs, in particular the Parabolic Anderson Model and allows to extend previous results to weakly nonlinear cases. The subject presented is based on joint works with Aleksander Klimek and Nicolas Perkowski."

Mon, 27 Jan 2020

14:15 - 15:15
L3

A wetting model in the continuum

HENRI ELAD ALTMAN
(Imperial College, London)
Abstract

In this talk I will introduce a continuous wetting model consisting of the law of a Brownian meander tilted by its local time at a positive level h, with h small. I will prove that this measure converges, as h tends to 0, to the same weak limit as for discrete critical wetting models. I will also discuss the corresponding gradient dynamics, which is expected to converge to a Bessel SPDE admitting the law of a reflecting Brownian motion as invariant measure. This is based on joint work with Jean-Dominique Deuschel and Tal Orenshtein.

Mon, 27 Jan 2020

14:15 - 15:15
L4

Symplectic embeddings and infinite staircases. 

Tara Holm
(Cornell and Cambridge)
Abstract

McDuff and Schlenk determined when a four-dimensional symplectic ellipsoid can be symplectically embedded into a four-dimensional ball. They found that if the ellipsoid is close to round, the answer is given by an ``infinite staircase" determined by the odd index Fibonacci numbers, while if the ellipsoid is sufficiently stretched, all obstructions vanish except for the volume obstruction. Infinite staircases have also been found when embedding ellipsoids into polydisks (Frenkel - Muller, Usher) and into the ellipsoid E(2, 3) (Cristofaro-Gardiner - Kleinman). In this talk, we will see how the sharpness of ECH capacities for embedding of ellipsoids implies the existence of infinite staircases for these and three other target spaces.  We will then discuss the relationship with toric varieties, lattice point counting, and the Philadelphia subway system. This is joint work with Dan Cristofaro-Gardiner, Alessia Mandini,
and Ana Rita Pires.

 

Mon, 27 Jan 2020
12:45
L3

The Attractor Mechanism and the Arithmetic of Calabi-Yau Manifolds

Philip Candelas
(Oxford)
Abstract

In the process of studying the zeta-function for one parameter families of Calabi-Yau manifolds we have been led to a manifold, for which the quartic numerator of the zeta-function factorises into two quadrics remarkably often. Among these factorisations, we find persistent factorisations; these are determined by a parameter that satisfies an algebraic equation with coefficients in Q, so independent of any particular prime.  We note that these factorisations are due a splitting of Hodge structure and that these special values of the parameter are rank two attractor points in the sense of IIB supergravity. To our knowledge, these points provide the first explicit examples of non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3) holonomy. Modular groups and modular forms arise in relation to these attractor points in a way that, to a physicist, is unexpected. This is a report on joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

 

 

Fri, 24 Jan 2020

16:00 - 17:00
L1

Nonlinear Waves in Granular Crystals: From Modeling and Analysis to Computations and Experiments

Panos Kevrekidis
(University of Massachusetts)
Further Information

The Mathematical Institute Colloquia are funded in part by the generosity of Oxford University Press.

This Colloquium is supported by a Leverhulme Trust Visiting Professorship award.

Abstract

In this talk, we will provide an overview of results in the setting of granular crystals, consisting of spherical beads interacting through nonlinear elastic spring-like forces. These crystals are used in numerous engineering applications including, e.g., for the production of "sound bullets'' or the examination of bone quality. In one dimension we show that there exist three prototypical types of coherent nonlinear waveforms: shock waves, traveling solitary waves and discrete breathers. The latter are time-periodic, spatially localized structures. For each one, we will analyze the existence theory, presenting connections to prototypical models of nonlinear wave theory, such as the Burgers equation, the Korteweg-de Vries equation and the nonlinear Schrodinger (NLS) equation, respectively. We will also explore the stability of such structures, presenting some explicit stability criteria for traveling waves in lattices. Finally, for each one of these structures, we will complement the mathematical theory and numerical computations with state-of-the-art experiments, allowing their quantitative identification and visualization. Finally, time permitting, ongoing extensions of these themes will be briefly touched upon, most notably in higher dimensions, in heterogeneous or disordered chains and in the presence of damping and driving; associated open questions will also be outlined.

Fri, 24 Jan 2020

15:00 - 16:00
N3.12

The topology and geometry of molecular conformational spaces and energy landscapes

Ingrid Membrillo-Solis
(University of Southampton)
Abstract

Molecules are dynamical systems that can adopt a variety of three dimensional conformations which, in general, differ in energy and physical properties. The identification of energetically favourable conformations is fundamental in molecular physics and computational chemistry, since it is closely related to important open problems such as the prediction of the folding of proteins and virtual screening for drug design.
In this talk I will present theoretical and data-driven approaches to the study of molecular conformational spaces and their associated energy landscapes. I will show that the topology of the internal molecular conformational space might change after taking its quotient by the group action of a discrete group of symmetries. I will also show that geometric and topological tools for data analysis such as procrustes analysis, local dimensionality reduction, persistent homology and discrete Morse theory provide with efficient methods to study the mathematical structures underlying the molecular conformational spaces and their energy landscapes.
 

Fri, 24 Jan 2020

14:00 - 15:00
L1

Managing Workload - "Orchestrating learning opportunities"

Nick Andrews
Abstract

Taught courses offer a range of distinctive learning opportunities from lectures to tutorials/supervisions through to individual study. Orchestration refers to the combining and sequencing of these opportunities for maximum effect. This raises a question about who does the orchestration. In school, there is a good case for suggesting that it is teachers who take responsibility for orchestration of students’ learning opportunities. Moving to university, do students take on more responsibility for orchestration?

In this session there will be a chance to look back on the learning opportunities you experienced last term and to reflect on how (or even if) they were orchestrated. What could be different in the term ahead if you pay more attention to how distinctive learning opportunities are orchestrated?

Fri, 24 Jan 2020

14:00 - 15:00
L3

Mathematical modelling as part of an HIV clinical trial in sub-Saharan Africa

Dr Will Probert
(Big Data Institute Nuffield Department of Medicine University of Oxford)
Abstract

Globally, almost 38 million people are living with HIV.  HPTN 071 (PopART) is the largest HIV prevention trial to date, taking place in 21 communities in Zambia and South Africa with a combined population of more than 1 million people.  As part of the trial an individual-based mathematical model was developed to help in planning the trial, to help interpret the results of the trial, and to make projections both into the future and to areas where the trial did not take place. In this talk I will outline the individual-based mathematical model used in the trial, the inference framework, and will discuss examples of how the results from the model have been used to help inform policy decisions.  

Fri, 24 Jan 2020

12:00 - 13:00
L4

Tensor methods in optimization

Geovani Grapiglia
(Universidade Federal do Paraná)
Abstract


In this talk we present p-order methods for unconstrained minimization of convex functions that are p-times differentiable with Hölder continuous p-th derivatives. We establish worst-case complexity bounds for methods with and without acceleration. Some of these methods are "universal", that is, they do not require prior knowledge of the constants that define the smoothness level of the objective function. A lower complexity bound for this problem class is also obtained. This is a joint work with Yurii Nesterov (Université Catholique de Louvain).
 

Thu, 23 Jan 2020

16:00 - 17:00
L5

Efficient congruence and discrete restriction for (x,x^3)

Kevin Hughes
(University of Bristol)
Abstract

We will outline the main features of Wooley's efficient congruencing method for the parabola. Then we will go on to prove new bounds for discrete restriction to the curve (x,x^3). The latter is joint work with Trevor Wooley (Purdue).

Thu, 23 Jan 2020

16:00 - 17:30
L3

Thermal Fluctuations in Free Surface Nanoflows

James Sprittles
(University of Warwick)
Abstract

The Navier-Stokes paradigm does not capture thermal fluctuations that drive familiar effects such as Brownian motion and are seen to be key to understanding counter-intuitive phenomena in nanoscale interfacial flows.  On the other hand, molecular simulations naturally account for these fluctuations but are limited to exceptionally short time scales. A framework that incorporates thermal noise is provided by fluctuating hydrodynamics, based on the so-called Landau-Lifshitz-Navier-Stokes equations, and in this talk we shall exploit these equations to gain insight into nanoscale free surface flows.  Particular attention will be given to flows with topological changes, such as the coalescence of drops, breakup of jets and rupture of thin liquid films for which both analytic linear stability results and numerical simulations will be presented and compared to the results of molecular dynamics.

Thu, 23 Jan 2020

14:00 - 15:00
L4

Computational boundary element methods with Bempp

Timo Betcke
(UCL)
Abstract

Boundary integral equations are an elegant tool to model and simulate a range of physical phenomena in bounded and unbounded domains.

While mathematically well understood, the numerical implementation (e.g. via boundary element methods) still poses a number of computational challenges, from the efficient assembly of the underlying linear systems up to the fast preconditioned solution in complex applications. In this talk we provide an overview of some of these challenges and demonstrate the efficient implementation of boundary element methods on modern CPU and GPU architectures. As part of the talk we will present a number of practical examples using the Bempp-cl boundary element software, our next generation boundary element package, that has been developed in Python and supports modern vectorized CPU instruction sets and a number of GPU types.

Thu, 23 Jan 2020

13:00 - 14:00
N3.12

Many paths, one maths

Noam Kantor
(University of Oxford)
Abstract

Let's take a step back to understand what it means to use maths in society: Which maths, and whose society? I'll talk about some of the options I've come across, including time I spent at the US Census Bureau, and we will hear your ideas too. We might even crowdsource a document of maths in society opportunities together...

Thu, 23 Jan 2020
12:00
L4

Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law

Simon Schulz
(University of Cambridge)
Abstract

Do classical solutions of the compressible Navier-Stokes equations converge to an entropy solution of their inviscid counterparts, the Euler equations? In this talk we present a result which answers this question affirmatively, in the one-dimensional case, for a particular class of fluids. Specifically, we consider gases that exhibit approximately polytropic behaviour in the vicinity of the vacuum, and that are isothermal for larger values of the density (which we call approximately isothermal gases). Our approach makes use of methods from the theory of compensated compactness of Tartar and Murat, and is inspired by the earlier works of Chen and Perepelitsa, Lions, Perthame and Tadmor, and Lions, Perthame and Souganidis. This is joint work with Matthew Schrecker.

Thu, 23 Jan 2020
11:30
C4

On groups definable in fields with commuting automorphisms

Kaisa Kangas
(Helsinki University)
Abstract

 

We take a look at difference fields with several commuting automorphisms. The theory of difference fields with one distinguished automorphism has a model companion known as ACFA, which Zoe Chatzidakis and Ehud Hrushovski have studied in depth. However, Hrushovski has proved that if you look at fields with two or more commuting automorphisms, then the existentially closed models of the theory do not form a first order model class. We introduce a non-elementary framework for studying them. We then discuss how to generalise a result of Kowalski and Pillay that every definable group (in ACFA) virtually embeds into an algebraic group. This is joint work in progress with Zoe Chatzidakis and Nick Ramsey.

Wed, 22 Jan 2020
16:00
C1

Whitehead graphs in free groups

Ric Wade
(Oxford University)
Abstract

Whitehead published two papers in 1936 on free groups. Both concerned decision problems for equivalence of (sets of) elements under automorphisms. The first focused on primitive elements (those that appear in some basis), the second looked at arbitrary sets of elements. While both of the resulting algorithms are combinatorial, Whitehead's proofs that these algorithms actually work involve some nice manipulation of surfaces in 3-manifolds. We will have a look at how this works for primitive elements. I'll outline some generalizations due to Culler-Vogtmann, Gertsen, and Stallings, and if we have time talk about how it fits in with some of my current work.

Wed, 22 Jan 2020
14:00
N3.12

Complete Homogeneous Symmetric Polynomials

Esteban Gomezllata Marmolejo
(Oxford University)
Abstract

The $k$-th complete homogeneous symmetric polynomial in $m$ variables $h_{k,m}$ is the sum of all the monomials of degree $k$ in $m$ variables. They are related to the Symmetric powers of vector spaces. In this talk we will present some of their standard properties, some classic combinatorial results using the "stars and bars" argument, as well as an interesting result: the complete homogeneous symmetric polynomial applied to $(1+X_i)$ can be written as a linear combination of complete homogeneous symmetric poynomials in the $X_i$. To compute the coefficients of this linear combination, we extend the classic "stars and bars" argument.

Tue, 21 Jan 2020
15:00
L3

On the kinematic algebra for BCJ numerators beyond the MHV sector

Gang Chen
(Queen Mary London)
Abstract

The duality between color and kinematics present in scattering amplitudes of Yang-Mills theory strongly suggest the existence of a hidden kinematic Lie algebra that controls the gauge theory. While associated BCJ numerators are known on closed forms to any multiplicity at tree level, the kinematic algebra has only been partially explored for the simplest of four-dimensional amplitudes: up to the MHV sector. In this paper we introduce a framework that allows us to characterize the algebra beyond the MHV sector. This allows us to both constrain some of the ambiguities of the kinematic algebra, and better control the generalized gauge freedom that is associated with the BCJ numerators. Specifically, in this paper, we work in dimension-agnostic notation and determine the kinematic algebra valid up to certain O((εi⋅εj)2) terms that in four dimensions compute the next-to-MHV sector involving two scalars. The kinematic algebra in this sector is simple, given that we introduce tensor currents that generalize standard Yang-Mills vector currents. These tensor currents controls the generalized gauge freedom, allowing us to generate multiple different versions of BCJ numerators from the same kinematic algebra. The framework should generalize to other sectors in Yang-Mills theory.

Tue, 21 Jan 2020
14:30
L5

Nonlinear Subspace Correction Methods

Thomas Roy
(Oxford)
Abstract

Subspace correction (SSC) methods are based on a "divide and conquer" strategy, where a global problem is divided into a sequence of local ones. This framework includes iterative methods such as Jacobi iteration, domain decomposition, and multigrid methods. We are interested in nonlinear PDEs exhibiting highly localized nonlinearities, for which Newton's method can take many iterations. Instead of doing all this global work, nonlinear SSC methods tackle the localized nonlinearities within subproblems. In this presentation, we describe the SSC framework, and investigate combining Newton's method with nonlinear SSC methods to solve a regularized Stefan problem.
 

Tue, 21 Jan 2020
14:00
L6

Extremal problems of long cycles in random graphs

Gal Kronenberg
(University of Oxford)
Abstract

In this talk, we consider the random version of some classical extremal problems in the context of long cycles. This type of problems can also be seen as random analogues of the Turán number of long cycles, established by Woodall in 1972.

For a graph $G$ on $n$ vertices and a graph $H$, denote by $\text{ex}(G,H)$ the maximal number of edges in an $H$-free subgraph of $G$. We consider a random graph $G\sim G(n,p)$ where $p>C/n$, and determine the asymptotic value of $\text{ex}(G,C_t)$, for every $A\log(n)< t< (1- \varepsilon)n$. The behaviour of $\text{ex}(G,C_t)$ can depend substantially on the parity of $t$. In particular, our results match the classical result of Woodall, and demonstrate the transference principle in the context of long cycles.

Using similar techniques, we also prove a robustness-type result, showing the likely existence of cycles of prescribed lengths in a random subgraph of a graph with a nearly optimal density (a nearly ''Woodall graph"). If time permits, we will present some connections to size-Ramsey numbers of long cycles.

Based on joint works with Michael Krivelevich and Adva Mond.

Tue, 21 Jan 2020
14:00
L5

Vandermonde with Arnoldi

Nick Trefethen
(Oxford)
Abstract

Vandermonde matrices are exponentially ill-conditioned, rendering the familiar “polyval(polyfit)” algorithm for polynomial interpolation and least-squares fitting ineffective at higher degrees. We show that Arnoldi orthogonalization fixes the problem.

Tue, 21 Jan 2020

12:00 - 13:00
C1

Generative models and representational learning on street networks

Mateo Neira
(University College London)
Abstract

Cities are now central to addressing global changes, ranging from climate change to economic resilience. There is a growing concern of how to measure and quantify urban phenomena, and one of the biggest challenges in quantifying different aspects of cities and creating meaningful indicators lie in our ability to extract relevant features that characterize the topological and spatial patterns of urban form. Many different models that can reproduce large-scale statistical properties observed in systems of streets have been proposed, from spatial random graphs to economical models of network growth. However, existing models fail to capture the diversity observed in street networks around the world. The increased availability of street network datasets and advancements in deep learning models present a new opportunity to create more accurate and flexible models of urban street networks, as well as capture important characteristics that could be used in downstream tasks.  We propose a simple approach called Convolutional-PCA (ConvPCA) for both creating low-dimensional representations of street networks that can be used for street network classification and other downstream tasks, as well as a generating new street networks that preserve visual and statistical similarity to observed street networks.

Link to the preprint

Mon, 20 Jan 2020

16:00 - 17:00

The Morse index of Willmore spheres and its relation to the geometry of minimal surfaces

Elena Maeder-Baumdicker
(TU Darmstadt)
Abstract

I will explain what the Willmore Morse Index of unbranched Willmore spheres in Euclidean three-space is and how to compute it. It turns out that several geometric properties at the ends of complete minimal surfaces with embedded planar ends are related to the mentioned Morse index.
One consequence of that computation is that all unbranched Willmore spheres are unstable (except for the round sphere). This talk is based on work with Jonas Hirsch.

 

Mon, 20 Jan 2020
15:45
L6

Algorithms for infinite linear groups: methods and applications

Alla Detinko
(Mathematics Dept., University of Hull)
Abstract

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields.  We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

Mon, 20 Jan 2020

15:45 - 16:45
L3

Recent developments in random geometry

JEAN-FRANCOIS LE GALL
(Universite Paris-Sud)
Abstract

We discuss the models of random geometry that are derived
from scaling limits of large graphs embedded in the sphere and
chosen uniformly at random in a suitable class. The case of
quadrangulations with a boundary leads to the so-called
Brownian disk, which has been studied in a number of recent works.
We present a new construction of the Brownian
disk from excursion theory for Brownian motion indexed
by the Brownian tree. We also explain how the structure
of connected components of the Brownian disk above a
given height gives rise to a remarkable connection with
growth-fragmentation processes.

Mon, 20 Jan 2020

14:15 - 15:15
L3

A new family of one-dimensional martingale couplings

BENJAMIN JOURDAIN
(ENPC FRANCE)
Abstract

We exhibit a new martingale coupling between two probability measures $\mu$ and $\nu$ in convex order on the real line. This coupling is explicit in terms of the integrals of the positive and negative parts of the difference between the quantile functions of $\mu$ and $\nu$. The integral of $|y-x|$ with respect to this coupling is smaller than twice the Wasserstein distance with index one between $\mu$ and $\nu$. When the comonotonous coupling between $\mu$ and $\nu$ is given by a map $T$, it minimizes the integral of $|y-T(x)|$ among all martingales coupling.

(joint work with William Margheriti)

Mon, 20 Jan 2020

14:15 - 15:15
L4

Symplectic geometry of Conical Symplectic Resolutions

Filip Zivanovic
(Oxford)
Abstract

Conical Symplectic Resolutions form a broad family of holomorphic symplectic manifolds that are of interest to mathematical physicists, algebraic geometers, and representation theorists; Nakajima Quiver Varieties and Hypertoric Varieties are known as their special cases. In this talk, I will be focused on the Symplectic Geometry of Conical Symplectic Resolutions, and its non-symplectic applications. More precisely, I will talk about my work on finding Exact Lagrangian Submanifolds inside CSRs, and work in progress (joint with Alexander Ritter) about the construction of Symplectic Cohomology on CSRs.

 

Thu, 16 Jan 2020

16:00 - 17:00
L4

PRICING OF COUNTERPARTY RISK AND FUNDING WITH CSA DISCOUNTING, PORTFOLIO EFFECTS AND INITIAL MARGIN.

Alessandro Gnoatto
(Universita degli studi di Verona)
Abstract


In this paper we extend the existing literature on xVA along three directions. First, we enhance current BSDE-based xVA frameworks to include initial margin by following the approach of Crépey (2015a) and Crépey (2015b). Next, we solve the consistency problem that arises when the front- office desk of the bank uses trade-specific discount curves that differ from the discount curve adopted by the xVA desk. Finally, we address the existence of multiple aggregation levels for contingent claims in the portfolio between the bank and the counterparty, providing suitable extensions of our proposed single-claim xVA framework. 

This is a joint work with: Francesca Biagini and Immacolata Oliva

Preprint available at: https://arxiv.org/abs/1905.11328

Wed, 15 Jan 2020

14:00 - 15:00
L3

Curve counting via stable objects in derived categories of Calabi-Yau 4-folds

Yalong Cao
(IPMU Tokyo)
Further Information

In a joint work with Davesh Maulik and Yukinobu Toda, we proposed a conjectural Gopakumar-Vafa type formula for the generating series of stable pair invariants on Calabi-Yau 4-folds. In this talk, I will present the recent joint work with Yukinobu Toda on how to give an interpretation of the above GV type formula in terms of wall-crossing phenomena in the derived category of coherent sheaves. 

Tue, 14 Jan 2020
16:00
C3

Structure theory for groupoid C*-algebras

Christian Bonicke
(University of Glasgow)
Abstract

C*-algebras constructed from topological groupoids allow us to study many interesting and a priori very different constructions
of C*-algebras in a common framework. Moreover, they are general enough to appear intrinsically in the theory. In particular, it was recently shown
by Xin Li that all C*-algebras falling within the scope of the classification program admit (twisted) groupoid models.
In this talk I will give a gentle introduction to this class of C*-algebras and discuss some of their structural properties, which appear in connection
with the classification program.
 

Fri, 10 Jan 2020
15:45
L6

TBA

Christian Blanchet
(Institut de Mathématiques de Jussieu (Paris 7))
Tue, 17 Dec 2019

15:30 - 16:30
L6

The distribution of traces of powers of matrices over finite fields

Brad Rodgers
(Queen's University)
Abstract

Consider a random N by N unitary matrix chosen according to Haar measure. A classical result of Diaconis and Shashahani shows that traces of low powers of this matrix tend in distribution to independent centered gaussians as N grows. A result of Johansson shows that this convergence is very fast -- superexponential in fact. Similar results hold for other classical compact groups. This talk will discuss analogues of these results for N by N matrices taken from a classical group over a finite field, showing that as N grows, traces of powers of these matrices equidistribute superexponentially. A little surprisingly, the proof is connected to the distribution in short intervals of certain arithmetic functions in F_q[T]. This is joint work with O. Gorodetsky.

Fri, 13 Dec 2019

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Jonathan Grant Peters, Victor Wang, James Morrill, Lingyi Yang
(Mathematical Institute)
Thu, 12 Dec 2019

12:00 - 13:30
L3

Analysis and computations of a nonlocal thin film model for two-fluid shear driven flows

Professor Saleh Tanveer
(Ohio State University)
Abstract


We present analysis and computations of a non-local thin film model developed by Kalogirou et al (2016) for a perturbed two-layer Couette flow when the thickness of the more viscous fluid layer next to the stationary wall is small compared to the thickness of the less viscous fluid. Travelling wave solutions and their stability are determined numerically, and secondary bifurcation points identified in the process. We also determine regions in parameter space where bistability is observed with two branches being linearly stable at the same time. The travelling wave solutions are mathematically justified through a quasi-solution analysis in a neighbourhood of an empirically constructed approximate solution. This relies in part on precise asymptotics of integrals of Airy functions for large wave numbers. The primary bifurcation about the trivial state is shown rigorously to be supercritical, and the dependence of bifurcation points, as a function of Reynolds number R and the primary wavelength 2πν−1/2 of the disturbance, is determined analytically. We also present recent results on time periodic solutions arising from Hoof-Bifurcation of the primary solution branch.


(This work is in collaboration with D. Papageorgiou & E. Oliveira ) 
 

Thu, 12 Dec 2019

10:00 - 16:30
L5

LMS Applied Algebra and Geometry seminar

Various
Further Information

[[{"fid":"56979","view_mode":"media_portrait_large","fields":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-portrait-large","data-delta":"1"}}]]

Tue, 10 Dec 2019

17:00 - 18:00
L1

Oxford Mathematics Christmas Public Lecture: Chris Budd - Why does Rudolf have a shiny nose?

Chris Budd
(University of Bath)
Further Information

For our popular Christmas lecture this year Chris Budd will give a seasonal talk with a number of light hearted applications of mathematics to the
festive season. 

Chris is currently Professor of Applied Mathematics at the University of Bath, and Professor of Geometry at Gresham College. He is a passionate populariser of mathematics and was awarded an OBE in 2015 for services to science and maths education.

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Budd

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 10 Dec 2019

12:00 - 13:00
C1

Relationship between ideology and language in the Catalan independence context

Samuel Martin-Gutierrez
(Universidad Politécnica de Madrid)
Abstract

Political polarization generates strong effects on society, driving controversial debates and influencing the institutions. Territorial disputes are one of the most important polarized scenarios and have been consistently related to the use of language. In this work, we analyzed the opinion and language distributions of a particular territorial dispute around the independence of the Spanish region of Catalonia through Twitter data. We infer a continuous opinion distribution by applying a model based on retweet interactions, previously selecting a seed of elite users with fixed and antagonist opinions. The resulting distribution presents a mainly bimodal behavior with an intermediate third pole that appears spontaneously showing a less polarized society with the presence of not only antagonist opinions. We find that the more active, engaged and influential users hold more extreme positions. Also we prove that there is a clear relationship between political positions and the use of language, showing that against independence users speak mainly Spanish while pro-independence users speak Catalan and Spanish almost indistinctly. However, the third pole, closer in political opinion to the pro-independence pole, behaves similarly to the against-independence one concerning the use of language.

Ref: https://www.nature.com/articles/s41598-019-53404-x



 

Tue, 10 Dec 2019 09:00 -
Tue, 31 Mar 2020 18:00
South Mezz Circulation

The Penrose Proofs: an exhibition of Roger Penrose’s Scientific Drawings 1-6

Roger Penrose
(University of Oxford)
Further Information

As you might expect from a man whose family included the Surrealist artist Roland Penrose, Roger Penrose has always thought visually. That thinking is captured brilliantly in this selection of Roger’s drawings that he produced for his published works and papers.

From quasi-symmetric patterns to graphic illustrations of the paradoxical three versions of reality via twistor theory and the brain, this selection captures the stunning range of Roger’s scientific work and the visual thinking that inspires and describes it.

Mezzanine Level
Mathematical Institute
Oxford

10 December 2019- 31 March 2020

[[{"fid":"56998","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Mon, 09 Dec 2019

16:00 - 17:00
C1

TBA

Alyosha Latyntsev
(Oxford)
Mon, 09 Dec 2019

15:45 - 16:45
L3

Ito-Wentzell-Lions formula for measure dependent random fields under full and conditional measure flows

GONCALO DOS REIS
(University of Edinburgh)
Abstract


We present several Itô-Wentzell formulae on Wiener spaces for real-valued functionals random field of Itô type depending on measures. We distinguish the full- and marginal-measure flow cases. Derivatives with respect to the measure components are understood in the sense of Lions.
This talk is based on joint work with V. Platonov (U. of Edinburgh), see https://arxiv.org/abs/1910.01892.
 

Mon, 09 Dec 2019

14:15 - 15:45
L3

Low-dimensional quantum Yang-Mills measures

ILYA CHEVYREV
(University of Oxford)
Abstract

Yang-Mills theory plays an important role in the Standard Model and is behind many mathematical developments in geometric analysis. In this talk, I will present several recent results on the problem of constructing quantum Yang-Mills measures in 2 and 3 dimensions. I will particularly speak about a representation of the 2D measure as a random distributional connection and as the invariant measure of a Markov process arising from stochastic quantisation. I will also discuss the relationship with previous constructions of Driver, Sengupta, and Lévy based on random holonomies, and the difficulties in passing from 2 to 3 dimensions. Partly based on joint work with Ajay Chandra, Martin Hairer, and Hao Shen.

Fri, 06 Dec 2019

16:00 - 17:00
L1

Linking mathematics to industry

Abstract

Dr Rachel Philip will discuss her experiences working at the interface between academic mathematics and industry. Oxford University Innovation will discuss how they can help academics when interacting with industry. 

Fri, 06 Dec 2019

15:00 - 16:00
N3.12

Measuring the stability of Mapper type algorithms

Matt Burfitt
(University of Southampton)
Abstract

The goal of topological data analysis is to apply tools form algebraic topology to reveal geometric structures hidden within high dimensional data. Mapper is among its most widely and successfully applied tools providing, a framework for the geometric analysis of point cloud data. Given a number of input parameters, the Mapper algorithm constructs a graph, giving rise to a visual representation of the structure of the data.  The Mapper graph is a topological representation, where the placement of individual vertices and edges is not important, while geometric features such as loops and flares are revealed.

 

However, Mappers method is rather ad hoc, and would therefore benefit from a formal approach governing how to make the necessary choices. In this talk I will present joint work with Francisco Belchì, Jacek Brodzki, and Mahesan Niranjan. We study how sensitive to perturbations of the data the graph returned by the Mapper algorithm is given a particular tuning of parameters and how this depend on the choice of those parameters. Treating Mapper as a clustering generalisation, we develop a notion of instability of Mapper and study how it is affected by the choices. In particular, we obtain concrete reasons for high values of Mapper instability and experimentally demonstrate how Mapper instability can be used to determine good Mapper outputs.

 

Our approach tackles directly the inherent instability of the choice of clustering procedure and requires very few assumption on the specifics of the data or chosen Mapper construction, making it applicable to any Mapper-type algorithm.

Fri, 06 Dec 2019

14:00 - 15:00
L6

From red to white: The time-varying nature of oceanic heat flux in the Arctic

Srikanth Toppaladoddi
(University of Oxford)
Abstract

Arctic sea ice is one of the most sensitive components of the Earth’s climate system. The underlying ocean plays an important role in the evolution of the ice cover through its heat flux at the ice-ocean interface. Despite its importance, the spatio-temporal variations of this heat flux are not well understood. In this talk, I will take the following approach to study the variations in the heat flux. First, I will consider the problem of classical Rayleigh-Bénard convection and systematically explore the effects of fractal boundaries on heat transport using direct numerical simulations. And second, I will analyze time-series data from the Surface Heat Budget of the Arctic Ocean (SHEBA) program using Multifractal Detrended Fluctuation Analysis (MFDFA) to understand the nature of fluctuations in the heat flux. I will also discuss developing simple stochastic ODEs using results from these studies.

Fri, 06 Dec 2019

14:00 - 15:00
South Mezz Circulation

Working together: end-of-term mathematical board games

Abstract

Would you like to meet some of your fellow students, and some graduate students and postdocs, in an informal and relaxed atmosphere, while building your communication skills?  In this Friday@2 session, you'll be able to play a selection of board games, meet new people, and practise working together.  What better way to spend the final Friday afternoon of term?!  We'll play the games in the south Mezzanine area of the Andrew Wiles Building, outside L3.

Fri, 06 Dec 2019

10:00 - 11:00
L3

Generative design challenges in natural flood management

Steve Walker
(Arup)
Abstract

This challenge relates to problems (of a mathematical nature) in generating optimal solutions for natural flood management.  Natural flood management involves large numbers of small scale interventions in a much larger context through exploiting natural features in place of, for example, large civil engineering construction works. There is an optimisation problem related to the catchment hydrology and present methods use several unsatisfactory simplifications and assumptions that we would like to improve on.