Thu, 24 Oct 2019

16:00 - 17:30
C5

The classifying space of the 1-dimensional homotopy bordism category

Jan Steinebrunner
Abstract

The homotopy bordism category hCob_d has as objects closed (d-1)-manifolds and as morphisms diffeomorphism classes of d-dimensional bordisms. This is a simplified version of the topologically enriched bordism category Cob_d whose classifying space B(Cob_d) been completely determined by Galatius-Madsen-Tillmann-Weiss in 2006. In comparison, little is known about the classifying space B(hCob_d).

In the first part of the talk I will give an introduction to bordism categories and their classifying spaces. In the second part I will identify B(hCob_1) showing, in particular, that the rational cohomology ring of hCob_1 is polynomial on classes \kappa_i in degrees 2i+2 for all i>=1. The seemingly simpler category hCob_1 hence has a more complicated classifying space than Cob_1.

Thu, 24 Oct 2019

16:00 - 17:00
L6

L-functions of Kloosterman sums

Javier Fresán
(Ecole Polytechnique)
Abstract

Guided by the analogy with certain moments of the Bessel function that appear as Feynman integrals, Broadhurst and Roberts recently studied a family of L-functions built up by assembling symmetric power moments of Kloosterman sums over finite fields. I will prove that these L-functions arise from potentially automorphic motives over the field of rational numbers, and hence admit a meromorphic continuation to the complex plane that satisfies the expected functional equation. If time permits, I will identify the periods of the corresponding motives with the Bessel moments and make a few comments about the special values of the L-functions. This is a joint work with Claude Sabbah and Jeng-Daw Yu.

Thu, 24 Oct 2019

16:00 - 17:30
L3

Modeling & large-scale simulation of thin film liquid crystal flows

Linda Cummings
(New Jersey Institute of Technology)
Abstract

Thin film flows of nematic liquid crystal will be considered, using the Leslie-Ericksen formulation for nematics. Our model can account for variations in substrate anchoring, which may exert a strong influence on patterns that arise in the flow. A number of simulations will be presented using an "in house" code, developed to run on a GPU. Current modeling directions involving flow over interlaced electrodes, so-called "dielectrowetting", will be discussed.

Thu, 24 Oct 2019

14:00 - 15:00
L4

Reliable Real Computing

Fredrik Johansson
(University of Bordeaux)
Abstract

Can we get rigorous answers when computing with real and complex numbers? There are now many applications where this is possible thanks to a combination of tools from computer algebra and traditional numerical computing. I will give an overview of such methods in the context of two projects I'm developing. The first project, Arb, is a library for arbitrary-precision ball arithmetic, a form of interval arithmetic enabling numerical computations with rigorous error bounds. The second project, Fungrim, is a database of knowledge about mathematical functions represented in symbolic form. It is intended to function both as a traditional reference work and as a software library to support symbolic-numeric methods for problems involving transcendental functions. I will explain a few central algorithmic ideas and explain the research goals of these projects.

Thu, 24 Oct 2019
13:00

Industrial agglomeration and diversification

Dr Samuel Heroy
(University of Oxford)
Abstract

As early as the 1920's Marshall suggested that firms co-locate in cities to reduce the costs of moving goods, people, and ideas. These 'forces of agglomeration' have given rise, for example, to the high tech clusters of San Francisco and Boston, and the automobile cluster in Detroit. Yet, despite its importance for city planners and industrial policy-makers, until recently there has been little success in estimating the relative importance of each Marshallian channel to the location decisions of firms.
Here we explore a burgeoning literature that aims to exploit the co-location patterns of industries in cities in order to disentangle the relationship between industry co-agglomeration and customer/supplier, labour and idea sharing. Building on previous approaches that focus on across- and between-industry estimates, we propose a network-based method to estimate the relative importance of each Marshallian channel at a meso scale. Specifically, we use a community detection technique to construct a hierarchical decomposition of the full set of industries into clusters based on co-agglomeration patterns, and show that these industry clusters exhibit distinct patterns in terms of their relative reliance on individual Marshallian channels.

The second part is to use industry relatedness, which we measure via a similar metric to co-location, to better understand the association of industrial emissions to city-industry agglomeration. Specifically, we see that industrial emissions (which are the largest source of greenhouse emissions in the US) are highly tied to certain industries, and furthermore that communities in the industry relatedness network tend to explain the tendency of particular industry clusters to produce emissions. This is important, because it limits cities' abilities to move to a greener industry basket as some cities may be more or less constrained to highly polluting industry clusters, while others have more potential for diversification away from polluting industries.

Thu, 24 Oct 2019

12:00 - 13:00
L4

Structure theory of RCD spaces up to codimension 1

Daniele Semola
(Scuola Normale Superiore di Pisa)
Abstract

The aim of this talk is to give an overview about the structure theory of finite dimensional RCD metric measure spaces. I will first focus on rectifiability, existence, uniqueness and constancy of the dimension of tangents up to negligible sets.
Then I will motivate why boundaries of sets of finite perimeter are natural codimension one objects to look at in this framework and present some recent structure results obtained in their study.
This is based on joint works with Luigi Ambrosio, Elia Bruè and Enrico Pasqualetto.
 

Wed, 23 Oct 2019
16:00
C1

Surfaces via subsurfaces: an introduction to Masur-Minsky

Harry Petyt
(University of Bristol)
Abstract

The mapping class group of a surface is a group of homeomorphisms of that surface, and these groups have been very well studied in the last 50 years. The talk will be focused on a way to understand such a group by looking at the subsurfaces of the corresponding surface; this is the so-called "Masur-Minsky hierarchy machinery". We'll finish with a non-technical discussion of hierarchically hyperbolic groups, which are a popular area of current research, and of which mapping class groups are important motivating examples. No prior knowledge of the objects involved will be assumed.

Tue, 22 Oct 2019

15:30 - 16:30
L6

Asymptotics of Toeplitz determinants with Fisher-Hartwig singularities and applications to random matrix theory

Benjamin Fahs
(Imperial College London)
Abstract

We discuss asymptotics of Toeplitz determinants with Fisher--Hartwig singularities, and give an overview of past and more recent results.
Applications include the study of asymptotics of certain statistics of the characteristic polynomial of the Circular Unitary Ensemble (CUE) of random matrices. In particular recent results in the study of Toeplitz determinants allow for a proof of a conjecture by Fyodorov and Keating on moments of averages of the characteristic polynomial of the CUE.
 

Tue, 22 Oct 2019

15:30 - 16:30
L4

Stability conditions and spectral networks

Fabian Haiden
(Oxford)
Abstract

Stability conditions on triangulated categories were introduced by Bridgeland, based on ideas from string theory. Conjecturally, they control existence of solutions to the deformed Hermitian Yang-Mills equation and the special Lagrangian equation (on the A-side and B-side of mirror symmetry, respectively). I will focus on the symplectic side and sketch a program which replaces special Lagrangians by "spectral networks", certain graphs enhanced with algebraic data. Based on joint work in progress with Katzarkov, Konstevich, Pandit, and Simpson.

Tue, 22 Oct 2019

14:30 - 15:00
L5

An optimal polynomial approximation of Brownian motion

James Foster
(Oxford)
Abstract

In this talk, I will present a strong (or pathwise) approximation of standard Brownian motion by a class of orthogonal polynomials. Most notably, the coefficients obtained from this expansion are independent Gaussian random variables. This will enable us to generate approximate Brownian paths by matching certain polynomial moments. To conclude the talk, I will discuss related works and applications to numerical methods for SDEs.
 

Tue, 22 Oct 2019
14:15
L4

Representations associated to gradations of colour Lie algebras

Philippe Meyer
(Oxford University)
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.

Tue, 22 Oct 2019

14:00 - 15:00
L6

Homomorphisms from the torus

Matthew Jenssen
(Oxford)
Further Information

We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus Z_m^n, where m is even, to any fixed graph. Our main result establishes the "phase coexistence" phenomenon in a strong form: it shows that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some "dominant phase". This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper q-colourings of Z_m^n (so in particular, the discrete hypercube). For the proof we develop a `Cluster Expansion Method', which we expect to have further applications, by combining machinery from statistical physics, entropy and graph containers. This is joint work with Peter Keevash.
 

 
Tue, 22 Oct 2019

14:00 - 14:30
L5

A neural network based policy iteration algorithm with global H^2 -superlinear convergence for stochastic games on domains

Yufei Zhang
(Oxford)
Abstract

In this work, we propose a class of numerical schemes for solving semilinear Hamilton-Jacobi-Bellman-Isaacs (HJBI) boundary value problems which arise naturally from exit time problems of diffusion processes with controlled drift. We exploit policy iteration to reduce the semilinear problem into a sequence of linear Dirichlet problems, which are subsequently approximated by a multilayer feedforward neural network ansatz. We establish that the numerical solutions converge globally in the H^2 -norm, and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration for the HJBI equation. Moreover, we construct the optimal feedback controls from the numerical value functions and deduce convergence. The numerical schemes and convergence results are then extended to oblique derivative boundary conditions. Numerical experiments on the stochastic Zermelo navigation problem and the perpetual American option pricing problems are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method.
 

Tue, 22 Oct 2019

12:45 - 14:00
C5

Numerical Simulations using Approximate Random Numbers

Oliver Sheridan-Methven
(Oxford University)
Abstract

Introducing cheap function proxies for quickly producing approximate random numbers, we show convergence of modified numerical schemes, and coupling between approximation and discretisation errors. We bound the cumulative roundoff error introduced by floating-point calculations, valid for 16-bit half-precision (FP16). We combine approximate distributions and reduced-precisions into a nested simulation framework (via multilevel Monte Carlo), demonstrating performance improvements achieved without losing accuracy. These simulations predominantly perform most of their calculations in very low precisions. We will highlight the motivations and design choices appropriate for SVE and FP16 capable hardware, and present numerical results on Arm, Intel, and NVIDIA based hardware.

 

Tue, 22 Oct 2019
12:00
L4

Differential equations for one-loop string integrals

Oliver Schlotterer
(Uppsala)
Abstract

In this talk, I will describe new mathematical structures in the low-energy  expansion of one-loop string amplitudes. The insertion of external states on the open- and closed-string worldsheets requires integration over punctures on a cylinder boundary and a torus, respectively. Suitable bases of such integrals will be shown to obey simple first-order differential equations in the modular parameter of the surface. These differential equations will be exploited  to perform the integrals order by order in the inverse string tension, similar to modern strategies for dimensionally regulated Feynman integrals. Our method manifests the appearance of iterated integrals over holomorphic  Eisenstein series in the low-energy expansion. Moreover, infinite families of Laplace equations can be generated for the modular forms in closed-string  low-energy expansions.
 

Tue, 22 Oct 2019

12:00 - 13:00
C1

Learning from signals on graphs with unobserved edges

Micheal Schaub
(Department of Engineering)
Abstract

In many applications we are confronted with the following scenario: we observe snapshots of data describing the state of a system at particular times, and based on these observations we want to infer the (dynamical) interactions between the entities we observe. However, often the number of samples we can obtain from such a process are far too few to identify the network exactly. Can we still reliable infer some aspects of the underlying system?
Motivated by this question we consider the following alternative system identification problem: instead of trying to infer the exact network, we aim to recover a (low-dimensional) statistical model of the network based on the observed signals on the nodes.  More concretely, here we focus on observations that consist of snapshots of a diffusive process that evolves over the unknown network. We model the (unobserved) network as generated from an independent draw from a latent stochastic block model (SBM), and our goal is to infer both the partition of the nodes into blocks, as well as the parameters of this SBM. We present simple spectral algorithms that provably solve the partition and parameter inference problems with high-accuracy.

Mon, 21 Oct 2019

16:00 - 17:00
C1

Relative decidability via the tilting correspondence

Konstantinos Kartas
(Oxford University)
Abstract

The goal of the talk is to present a proof of the following statement:
Let (K,v) be an algebraic extension of (Q_p,v_p) whose completion is perfectoid. We show that K is relatively decidable to its tilt K^♭, i.e. if K^♭ is decidable in the language of valued fields, then so is K. 
In the first part [of the talk], I will try to cover the necessary background needed from model theory and the theory of perfectoid fields.

Mon, 21 Oct 2019

16:00 - 17:00
L4

Quantitative geometric inequalities

Fabio Cavalletti
(SISSA)
Abstract

Localization technique permits to reduce full dimensional problems to possibly easier lower dimensional ones. During the last years a new approach to localization has been obtained using the powerful tools of optimal transport. Following this approach, we obtain quantitative versions of two relevant geometric inequalities  in comparison geometry as Levy-Gromov isoperimetric inequality (joint with F. Maggi and A. Mondino) and the spectral gap inequality (joint with A. Mondino and D. Semola). Both results are also valid in the more general setting of metric measure spaces verifying the so-called curvature dimension condition.

Mon, 21 Oct 2019
15:45
L6

Lower bounds on the tunnel number of composite spatial theta graphs

Scott Taylor
(Colby College)
Abstract

The tunnel number of a graph embedded in a 3-dimensional manifold is the fewest number of arcs needed so that the union of the graph with the arcs has handlebody exterior. The behavior of tunnel number with respect to connected sum of knots can vary dramatically, depending on the knots involved. However, a classical theorem of Scharlemann and Schultens says that the tunnel number of a composite knot is at least the number of factors. For theta graphs, trivalent vertex sum is the operation which most closely resembles the connected sum of knots. The analogous theorem of Scharlemann and Schultens no longer holds, however. I will provide a sharp lower bound for the tunnel number of composite theta graphs, using recent work on a new knot invariant which is additive under connected sum and trivalent vertex sum. This is joint work with Maggy Tomova.

Mon, 21 Oct 2019

15:45 - 16:45
L3

Fatou's Lemmas for Varying Probabilities and their Applications to Sequential Decision Making

EUGENE FEINBERG
(Stony Brook University)
Abstract

The classic Fatou lemma states that the lower limit of expectations is greater or equal than the expectation of the lower limit for a sequence of nonnegative random variables. This talk describes several generalizations of this fact including generalizations to converging sequences of probability measures. The three types of convergence of probability measures are considered in this talk: weak convergence, setwise convergence, and convergence in total variation. The talk also describes the Uniform Fatou Lemma (UFL) for sequences of probabilities converging in total variation. The UFL states the necessary and sufficient conditions for the validity of the stronger inequality than the inequality in Fatou's lemma. We shall also discuss applications of these results to sequential optimization problems with completely and partially observable state spaces. In particular, the UFL is useful for proving weak continuity of transition probabilities for posterior state distributions of stochastic sequences with incomplete state observations known under the name of Partially Observable Markov Decision Processes. These transition probabilities are implicitly defined by Bayes' formula, and general method for proving their continuity properties have not been available for long time. This talk is based on joint papers with Pavlo Kasyanov, Yan Liang, Michael Zgurovsky, and Nina Zadoianchuk.

Mon, 21 Oct 2019

14:15 - 15:15
L3

Variational Inference in Gaussian processes

JAMES HENSMAN
(Prowler.io)
Abstract

 Gaussian processes are well studied object in statistics and mathematics. In Machine Learning, we think of Gaussian processes as prior distributions over functions, which map from the index set to the realised path. To make Gaussian processes a practical tool for machine learning, we have developed tools around variational inference that allow for approximate computation in GPs leveraging the same hardware and software stacks that support deep learning. In this talk I'll give an overview of variational inference in GPs, show some successes of the method, and outline some exciting direction of potential future work.

Mon, 21 Oct 2019

14:15 - 15:15
L4

The pure cohomology of multiplicative quiver varieties

Kevin McGerty
(Oxford)
Further Information

Multiplicative quiver varieties are a variant of Nakajima's "additive" quiver varieties which were introduced by Crawley-Boevey and Shaw.
They arise naturally in the study of various moduli spaces, in particular in Boalch's work on irregular connections. In this talk we will discuss joint work with Tom Nevins which shows that the tautological classes for these varieties generate the largest possible subalgebra of the cohomology ring, namely the pure part.

 

Mon, 21 Oct 2019

12:45 - 13:45
L3

The Higgs Mechanism and Hasse diagrams

Antoine Bourget
(Imperial College London)
Abstract

I will explore the geometrical structure of Higgs branches of quantum field theories with 8 supercharges in 3, 4, 5 and 6 dimensions. They are hyperkahler singularities, and as such they can be described by a Hasse diagram built from a family of elementary transitions. This corresponds physically to the partial Higgs mechanism. Using brane systems and recently introduced notions of magnetic quivers and quiver subtraction, we formalise the rules to obtain the Hasse diagrams.

Fri, 18 Oct 2019

16:00 - 17:00
L1

Geometry as a key to the virosphere: Mathematics as a driver of discovery in virology and anti-viral therapy

Reidun Twarock
(University of York)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

Abstract

Viruses encapsulate their genetic material into protein containers that act akin to molecular Trojan horses, protecting viral genomes between rounds of infection and facilitating their release into the host cell environment. In the majority of viruses, including major human pathogens, these containers have icosahedral symmetry. Mathematical techniques from group, graph and tiling theory can therefore be used to better understand how viruses form, evolve and infect their hosts, and point the way to novel antiviral solutions.

In this talk, I will present an overarching theory of virus architecture, that contains the seminal Caspar Klug theory as a special case and solves long-standing open problems in structural virology. Combining insights into virus structure with a range of different mathematical modelling techniques, such as Gillespie algorithms, I will show how viral life cycles can be better understood through the lens of viral geometry. In particular, I will discuss a recent model for genome release from the viral capsid. I will also demonstrate the instrumental role of the Hamiltonian path concept in the discovery of a virus assembly mechanism that occurs in many human pathogens, such as Picornaviruses – a family that includes the common cold virus– and Hepatitis B and C virus. I will use multi-scale models of a viral infection and implicit fitness landscapes in order to demonstrate that therapeutic interventions directed against this mechanism have advantages over conventional forms of anti-viral therapy. The talk will finish with a discussion of how the new mathematical and mechanistic insights can be exploited in bio-nanotechnology for applications in vaccination and gene therapy.

Fri, 18 Oct 2019

14:00 - 15:00
L1

Making the most of the intercollegiate classes

Dr Vicky Neale, Dr Richard Earl, Dr Neil Laws and George Cooper
Abstract

What should you expect in intercollegiate classes?  What can you do to get the most out of them?  In this session, experienced class tutors will share their thoughts, and a current student will offer tips and advice based on their experience.  

All undergraduate and masters students welcome, especially Part B and MSc students attending intercollegiate classes. (Students who attended the Part C/OMMS induction event will find significant overlap between the advice offered there and this session!)

Fri, 18 Oct 2019

14:00 - 15:00
L3

Cell polarity formation and the dynamics of small G proteins; or, why your Turing bifurcations should always be subcritical

Professor Alan Champneys
(Dept of Engineering Maths University of Bristol)
Abstract

In this talk I shall describe recent work inspired by problems in cell biology, namely how the dynamics of small G-proteins underlies polarity formation. Their dynamics is such that their active membrane bound form diffuses more slowly. Hence you might expect Turing patterns. Yet how do cells form backs and fronts or single isolated patches. In understanding these questions we shall show that the key is to identify the parameter region where Turing bifurcations are sub-critical. What emerges is a unified 2-parameter bifurcation diagram containing pinned fronts, localised spots, localised patterns. This diagram appears in many canonical models such as Schnakenberg and Brusselator, as well as biologically more realistic systems. A link is also found between theories of semi-string interaction asymptotics and so-called homoclinic snaking. I will close with some remarks about relevance to root hair formation and to the importance of subcriticality in biology. 

Fri, 18 Oct 2019

12:00 - 13:00
L4

DPM: A deep learning algorithm for estimating PDE models from data

Justin Sirignano
(The University of Illinois at Urbana-Champaign)
Abstract

Machine learning for scientific applications faces the challenge of limited data. To reduce overfitting, we propose a framework to leverage as much as possible a priori-known physics for a problem. Our approach embeds a deep neural network in a partial differential equation (PDE) system, where the pre-specified terms in the PDE capture the known physics and the neural network will learn to describe the unknown physics. The neural network is estimated from experimental and/or high-fidelity numerical datasets. We call this approach a “deep learning PDE model” (DPM). Once trained, the DPM can be used to make out-of-sample predictions for new physical coefficients, geometries, and boundary conditions. We implement our approach on a classic problem of the Navier-Stokes equation for turbulent flows. The numerical solution of the Navier-Stokes equation (with turbulence) is computationally expensive and requires a supercomputer. We show that our approach can estimate a (computationally fast) DPM for the filtered velocity of the Navier-Stokes equations. 

Thu, 17 Oct 2019
16:00
L6

One-level density of Dirichlet L-functions

Kyle Pratt
(Oxford)
Abstract

I will discuss work in progress with Sary Drappeau and Maksym Radziwill on low-lying zeros of Dirichlet L-functions. By way of motivation I will discuss some results on the spacings of zeros of the Riemann zeta function, and the conjectures of Katz and Sarnak relating the distribution of low-lying zeros of L-functions to eigenvalues of random matrices. I will then describe some ideas behind the proof of our theorem.
 

Thu, 17 Oct 2019

16:00 - 17:30
C5

A biased view of two-row Springer theory

Filip Zivanovic
Abstract

Springer theory is an important branch of geometric representation theory. It is a beautiful interplay between combinatorics, geometry and representation theory.
It started with Springer correspondence, which yields geometric construction of irreducible representations of symmetric groups, and Ginzburg's construction of universal enveloping algebra U(sl_n).

Here I will present a view of two-row Springer theory of type A (thus looking at nilpotent elements with two Jordan blocks) from a scope of a symplectic topologist (hence the title), that yields connections between symplectic-topological invariants and link invariants (Floer homology and Khovanov homology) and connections to representation theory (Fukaya category and parabolic category O), thus summarising results by Abouzaid,
Seidel, Smith and Mak on the subject.

Thu, 17 Oct 2019

16:00 - 17:00

Simplicity and Complexity of Belief-Propagation

Elchanan Mossel
(MIT)
Further Information

This Colloquium is taking place in the Department of Statistics on St Giles'.

Abstract

There is a very simple algorithm for the inference of posteriors for probability models on trees. This algorithm, known as "Belief Propagation" is widely used in coding theory, in machine learning, in evolutionary inference, among many other areas. The talk will be devoted to the analysis of Belief Propagation in some of the simplest probability models. We will highlight the interplay between Belief Propagation, linear estimators (statistics), the Kesten-Stigum bound (probability) and Replica Symmetry Breaking (statistical physics). We will show how the analysis of Belief Propagation allowed proof phase transitions for phylogenetic reconstruction in evolutionary biology and developed optimal algorithms for inference of block models. Finally, we will discuss the computational complexity of this 'simple' algorithm.

Thu, 17 Oct 2019

15:30 - 17:00
L3

Nitric oxide in the exhaled air: a messenger from the deepest parts of the lungs. Mathematical modeling of its transport for a better management of pulmonary diseases (cystic fibrosis, asthma, …)

Benoit Haut
(Université libre de Bruxelles (ULB))
Abstract

During this seminar, we will present a new mathematical model describing the transport of nitric oxide (NO) in a realistic geometrical representation of the lungs. Nitric oxide (NO) is naturally produced in the bronchial region of the lungs. It is a physiological molecule that has antimicrobial properties and allows the relaxation of muscles. It is well known that the measurement of the molar fraction of NO in the exhaled air, the so-called FeNO, allows a monitoring of asthmatic patients, since the production of this molecule in the lungs is increased in case of inflammation. However, recent clinical studies have shown that the amount of NO in the exhaled air can also be affected by « non-inflammatory » processes, such as the action of a bronchodilator or a respiratory physiotherapy session for a patient with cystic fibrosis. Using our new model, we will highlight the complex interplay between different transport phenomena in the lungs. More specifically, we will show why changes taking place in the deepest part of the lungs are expected to impact the FeNO. This gives a new light on the clinical studies mentioned below, allowing to confer a new role to the NO for the management of various pulmonary pathologies.

Thu, 17 Oct 2019

14:00 - 15:00
L5

Deep Learning: Asymptotics and Financial Applications

Justin Sirignano
(University of Illinois)
Abstract

Deep learning has revolutionized image, text, and speech recognition. Motivated by this success, there is growing interest in developing deep learning methods for financial applications. We will present some of our recent results in this area, including deep learning models of high-frequency data. In the second part of the talk, we prove a law of large numbers for single-layer neural networks trained with stochastic gradient descent. We show that, depending upon the normalization of the parameters, the law of large numbers either satisfies a deterministic partial differential equation or a random ordinary differential equation. Using similar analysis, a law of large numbers can also be established for reinforcement learning (e.g., Q-learning) with neural networks. The limit equations in each of these cases are discussed (e.g., whether a unique stationary point and global convergence can be proven).  

Thu, 17 Oct 2019

12:00 - 13:00
L4

Quasi-normal modes on asymptotically flat black holes

Dejan Gajic
(Cambridge)
Abstract

A fundamental problem in the context of Einstein's equations of general relativity is to understand precisely the dynamical evolution of small perturbations of stationary black hole solutions. It is expected that there is a discrete set of characteristic frequencies that play a dominant role at late time intervals and carry information about the nature of the black hole, much like the normal frequencies of a vibrating string. These frequencies are called quasi-normal frequencies or resonances and they are closely related to scattering resonances in the study of Schrödinger-type equations. I will discuss a new method of defining and studying resonances for linear wave equations on asymptotically flat black holes, developed from joint work with Claude Warnick.

Wed, 16 Oct 2019
16:00
C1

What Does a Cayley Graph Look Like?

Alice Kerr
(University of Oxford)
Abstract

Every Cayley graph of a finitely generated group has some basic properties: they are locally finite, connected, and vertex-transitive. These are not sufficient conditions, there are some well known examples of graphs that have all these properties but are non-Cayley. These examples do however "look like" Cayley graphs, which leads to the natural question of if there exist any vertex-transitive graphs that are completely unlike any Cayley graph. I plan to give some of the history of this question, as well as the construction of the example that finally answered it.

 

Wed, 16 Oct 2019
11:00
N3.12

Linear antimetrics and the "twin paradox"

Esteban Gomezllata Marmolejo
Abstract

The triangular inequality is central in Mathematics. What would happen if we reverse it? We only obtain trivial spaces. However, if we mix it with an order structure, we obtain interesting spaces. We'll present linear antimetrics, prove a "masking theorem", and then look at a corollary which tells us about the "twin paradox" in special relativity; time is antimetric!

Tue, 15 Oct 2019

15:30 - 16:30
L6

On random waves in Seba's billiard

Henrik Ueberschär
(Sorbonne Université)
Abstract

In this talk I will give an overview of Seba's billiard as a popular model in the field of Quantum Chaos. Consider a rectangular billiard with a Dirac mass placed in its interior. Whereas this mass has essentially no effect on the classical dynamics, it does have an effect on the quantum dynamics, because quantum wave packets experience diffraction at the point obstacle. Numerical investigations of this model by Petr Seba suggested that the spectrum and the eigenfunctions of the Seba billiard resemble the spectra and eigenfunctions of billiards which are classically chaotic.

I will give an introduction to this model and discuss recent results on quantum ergodicity, superscars and the validity of Berry's random wave conjecture. This talk is based on joint work with Par Kurlberg and Zeev Rudnick.

Tue, 15 Oct 2019

15:30 - 16:30
L4

D-modules in logarithmic geometry

Clemens Koppensteiner
(Oxford)
Abstract

Given a smooth variety X with a normal crossings divisor D (or more generally a smooth log variety) we consider the ring of logarithmic differential operators: the subring of differential operators on X generated by vector fields tangent to D. Modules over this ring are called logarithmic D-modules and generalize the classical theory of regular meromorphic connections. They arise naturally when considering compactifications.

We will discuss which parts of the theory of D-modules generalize to the logarithmic setting and how to overcome new challenges arising from the logarithmic structure. In particular, we will define holonomicity for log D-modules and state a conjectural extension of the famous Riemann-Hilbert correspondence. This talk will be very example-focused and will not require any previous knowledge of D-modules or logarithmic geometry. This is joint work with Mattia Talpo.
 

Tue, 15 Oct 2019
14:30
L5

Finite Element Methods for Intrinsic Geometric Flows

Evan Gawlik
(University of Hawaii at Manoa)
Abstract

Partial differential equations governing unknown or evolving geometries are ubiquitous in applications and challenging to discretize. A great deal of numerical work in this area has focused on extrinsic geometric flows, where the evolving geometry is a curve or surface embedded in Euclidean space. Much less attention has been paid to the discretization of intrinsic geometric flows, where the evolving geometry is described by a Riemannian metric. This talk will present finite element discretizations of such flows.
 

Tue, 15 Oct 2019

14:15 - 15:15
L4

Combinatorial anabelian geometry and its applications

Shota Tsujimura
(RIMS, Kyoto)
Abstract

Combinatorial anabelian geometry is a modern branch of anabelian geometry which deals with those aspects of anabelian geometry which manifest themselves over algebraically closed fields of characteristic zero. The origin of combinatorial anabelian geometry is in S. Mochizuki’s pioneering papers from 2007, in which he reinterpreted and generalised some key components of his earlier famous proof of the Grothendieck conjecture. S. Mochizuki  discovered that one can separate arguments which work over algebraically closed fields from arithmetic arguments, and study the former by using combinatorial methods. This led to a very nontrivial development of the theory of combinatorial anabelian geometry by S. Mochizuki and Y. Hoshi and other mathematicians. In this talk, after introducing the theory of combinatorial anabelian geometry I will discuss  applications of combinatorial anabelian geometry to the study of the absolute Galois group of number fields and of p-adic local fields and to the study of the Grothendieck-Teichmueller group. In particular, I will talk about the recent construction of a splitting of the natural inclusion of the absolute Galois group of p-adic numbers to the (largest) p-adic Grothendieck–Teichmueller group and a splitting of the natural embedding of the absolute Galois group of rationals into the commensurator of the absolute Galois group of the maximal abelian extension of rationals in the Grothendieck–Teichmueller group.
 

Tue, 15 Oct 2019

14:00 - 15:00
L6

Approximately counting and sampling small witnesses using a colourful decision oracle

Kitty Meeks
(University of Glasgow)
Abstract

Decision problems – those in which the goal is to return an answer of “YES" or “NO" – are at the heart of the theory of computational complexity, and remain the most studied problems in the theoretical algorithms community. However, in many real-world applications it is not enough just to decide whether the problem under consideration admits a solution: we often want to find all solutions, or at least count (either exactly or approximately) their  total number. It is clear that finding or counting all solutions is at least as computationally difficult as deciding whether there exists a single solution, and  indeed in many cases it is strictly harder (assuming P is not equal NP) even to count approximately the number of solutions than it is to decide whether there exists at least one.


In this talk I will discuss a restricted family of problems, in which we are interested in solutions of a given size: for example, solutions could be copies of a specific k-vertex graph H in a large host graph G, or more generally k-vertex subgraphs of G that have some specified property (e.g. k-vertex subgraphs that are connected). In this setting, although exact counting is strictly harder than decision (assuming standard assumptions in parameterised complexity), the methods typically used to separate approximate counting from decision break down. Indeed, I will demonstrate a method that, subject to certain additional assumptions, allows us to transform an efficient decision algorithm for a problem of this form into an approximate counting algorithm with essentially the same running time.

This is joint work with John Lapinskas (Bristol) and Holger Dell (ITU Copenhagen).

Tue, 15 Oct 2019
14:00
L5

Wilkinson, numerical analysis, and me

Nick Trefethen
(Oxford)
Abstract

The two courses I took from Wilkinson as a graduate student at Stanford influenced me greatly.  Along with some reminiscences of those days, this talk will touch upon backward error analysis, Gaussian elimination, and Evariste Galois.  It was originally presented at the Wilkinson 100th Birthday conference in Manchester earlier this year.

 

Tue, 15 Oct 2019

12:00 - 13:00
C1

Elasticity of random polymer networks

Ghadeer Alame
(Monash University)
Abstract

Many soft materials, such as elastomers and hydrogels, are made of long chain molecules crosslinked to form a three-dimensional network. Their mechanical properties depend on network parameters such as chain density, chain length distribution and the functionality of the crosslinks. Understanding the relationships between the topology of polymer networks and their mechanical properties has been a long-standing challenge in polymer physics.

In this work, we focus on so-called “near-ideal” networks, which are produced by the cross-coupling of star-like macromolecules with well-defined chain length. We developed a computational approach based on random discrete networks, according to which the polymer network is represented by an assembly of non-linear springs connected at junction points representing crosslinks. The positions of the crosslink points are determined from the conditions of mechanical equilibrium. Scaling relations for the elastic modulus and maximum extensibility of the network were obtained. Our scaling relations contradict some predictions of classical estimates of rubber elasticity and have implications for the interpretation of experimental data for near-ideal polymer networks.

Reference: G. Alame, L. Brassart. Relative contributions of chain density and topology to the elasticity of two-dimensional polymer networks. Soft Matter 15, 5703 (2019).

Tue, 15 Oct 2019

12:00 - 13:15
L4

Gauged sigma models and magnetic skyrmions

Bernd Schroers
(Heriot Watt University Edinburgh)
Abstract

Magnetic skyrmions are topological solitons which occur in a large class
of ferromagnetic materials and which are currently attracting much
attention in the condensed matter community because of  their possible
use  in future magnetic information storage technology.  The talk is
about an integrable model for magnetic skyrmions, introduced in a recent
paper (arxiv 1812.07268) and generalised in (arxiv 1905.06285). The
model can be solved by interpreting it as a gauged nonlinear sigma
model. In the talk will explain the model and the geometry behind its
integrability, and discuss some of the solutions and their physical
interpretation.

Mon, 14 Oct 2019

16:00 - 17:00
C1

From Chabauty's Method to Kim's Non-Abelian Chabauty's Method

Nadav Gropper
(Archaeology, Oxford)
Abstract

In 1941, Chabauty gave a way to compute the set of rational points on specific curves. In 2004, Minhyong Kim showed how to extend Chabauty's method to a bigger class of curves using anabelian methods. In the talk, I will explain Chabauty's method and give an outline of how Kim extended those methods.

Mon, 14 Oct 2019

15:45 - 16:45
L3

Entrance and exit at infinity for stable jump diffusions

ANDREAS KYPRIANOU
(University of Bath)
Abstract

Description:In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for jump diffusions driven by a stable process.Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the these processes have features not observes in the diffusion setting. We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for Lévy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of Lévy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.

 
Mon, 14 Oct 2019
15:45
L6

Uryson width and volume

Panos Papasoglu
(Oxford)
Abstract

I will give a brief survey of some problems in curvature free geometry and sketch

a new proof of the following:

Theorem (Guth). There is some $\delta (n)>0$ such that if $(M^n,g)$ is a closed aspherical Riemannian manifold and $V(R)$ is the volume of the largest ball of radius $R$ in the universal cover of $M$, then $V(R)\geq \delta(n)R^n$ for all $R$.

I will also discuss some recent related questions and results.

Mon, 14 Oct 2019

14:15 - 15:15
L3

Optimal control of stochastic evolution equations via randomisation and backward stochastic differential equations.

MARCO FUHRMAN
(University of Milan)
Abstract

Backward Stochastic Differential Equations (BSDEs) have been successfully applied  to represent the value of optimal control problems for controlled

stochastic differential equations. Since in the classical framework several restrictions on the scope of applicability of this method remained, in recent times several approaches have been devised to obtain the desired probabilistic representation in more general situations. We will review the so called  randomization method, originally introduced by B. Bouchard in the framework of optimal switching problems, which consists in introducing an auxiliary,`randomized'' problem with the same value as the original one, where the control process is replaced by an exogenous random point process,and optimization is performed over a family of equivalent probability measures. The value of the randomized problem is then represented

by means of a special class of BSDEs with a constraint on one of the unknown processes.This methodology will be applied in the framework of controlled evolution equations (with immediate applications to controlled SPDEs), a case for which very few results are known so far.

 

 

 

 

Mon, 14 Oct 2019

14:15 - 15:15
L4

Local stability of Einstein metrics under the Ricci iteration

Tim Buttsworth
(Cornell)
Further Information

A Ricci iteration is a sequence of Riemannian metrics on a manifold such that every metric in the sequence is equal to the Ricci curvature of the next metric. These sequences of metrics were introduced by Rubinstein to provide a discretisation of the Ricci flow. In this talk, I will discuss the relationship between the Ricci iteration and the Ricci flow. I will also describe a recent result concerning the existence and convergence of Ricci iterations close to certain Einstein metrics. (Joint work with Max Hallgren)