Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Mon, 03 Jun 2024

14:00 - 15:00
Lecture Room 3

Where Can Advanced Optimization Methods Help in Deep Learning?

James Martens
(Google Deep Mind)
Abstract

Modern neural network models are trained using fairly standard stochastic gradient optimizers, sometimes employing mild preconditioners. 
A natural question to ask is whether significant improvements in training speed can be obtained through the development of better optimizers. 

In this talk I will argue that this is impossible in the large majority of cases, which explains why this area of research has stagnated. I will go on to identify several situations where improved preconditioners can still deliver significant speedups, including exotic architectures and loss functions, and large batch training. 

Mon, 03 Jun 2024
15:30
L5

Geometric semi-norms in homology

Stephane Sabourau
(Université Paris-Est Créteil)
Abstract

The simplicial volume of a simplicial complex is a topological invariant
related to the growth of the fundamental group, which gives rise to a
semi-norm in homology. In this talk, we introduce the volume entropy
semi-norm, which is also related to the growth of the fundamental group
of simplicial complexes and shares functorial properties with the
simplicial volume. Answering a question of Gromov, we prove that the
volume entropy semi-norm is equivalent to the simplicial volume
semi-norm in every dimension. Joint work with I. Babenko.
 

Mon, 03 Jun 2024
15:30
L3

TBC

Prof Stephan Eckstein
(University of Tübingen)
Mon, 03 Jun 2024

16:30 - 17:30
L4 tbc

TBC

Josef Malek
(Mathematics Faculty at the Charles University in Prague)
Abstract

to follow

Tue, 04 Jun 2024

14:00 - 15:00
L5

TBC

James Newton
(University of Oxford)
Abstract

to follow

Tue, 04 Jun 2024

14:30 - 15:00
L3

TBA

Georg Maierhofer
(Mathematical Institute (University of Oxford))
Abstract

TBA

Tue, 04 Jun 2024
16:00
L6

TBA

Ofir Gorodetsky
(University of Oxford)
Abstract

TBA

Thu, 06 Jun 2024

12:00 - 13:00
L3

Isolating internal waves using on-the-fly Lagrangian filtering in numerical simulations

Lois Baker
(University of Edinburgh, School of Mathematics)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Lois Baker is the Flora Philip Fellow and EPSRC National Fellow in Fluid Dynamicsa in the School of Mathematics at the University of Edinburgh. Her research involves using mathematical and numerical models to understand oceanic fluid dynamics. Baker is particularly interested in the interactions of internal waves and submesoscale vortices that are generated in the deep and upper ocean.

Abstract

 

In geophysical and astrophysical flows, we are often interested in understanding the impact of internal waves on the non-wavelike flow. For example, oceanic internal waves generated at the surface and the seafloor transfer energy from the large scale flow to dissipative scales, thereby influencing the global ocean state. A primary challenge in the study of wave-flow interactions is how to separate these processes – since waves and non-wavelike flows can vary on similar spatial and temporal scales in the Eulerian frame. However, in a Lagrangian flow-following frame, temporal filtering offers a convenient way to isolate waves. Here, I will discuss a recently developed method for evolving Lagrangian mean fields alongside the governing equations in a numerical simulation, and extend this theory to allow effective filtering of waves from non-wavelike processes.

 

Thu, 06 Jun 2024

14:00 - 15:00
Lecture Room 3

Structure-preserving hybrid finite element methods

Ari Stern
(Washington University in St. Louis, USA)
Abstract

The classical finite element method uses piecewise-polynomial function spaces satisfying continuity and boundary conditions. Hybrid finite element methods, by contrast, drop these continuity and boundary conditions from the function spaces and instead enforce them weakly using Lagrange multipliers. The hybrid approach has several numerical and implementational advantages, which have been studied over the last few decades.

 

In this talk, we show how the hybrid perspective has yielded new insights—and new methods—in structure-preserving numerical PDEs. These include multisymplectic methods for Hamiltonian PDEs, charge-conserving methods for the Maxwell and Yang-Mills equations, and hybrid methods in finite element exterior calculus.

Fri, 07 Jun 2024

12:00 - 13:00
Quillen Room

TBD

Samuel Lewis
(University of Glasgow)
Abstract

TBD

Fri, 07 Jun 2024

14:00 - 15:00
L3

Modeling the electromechanics of aerial electroreception

Dr Isaac Vikram Chenchiah
(School of Mathematics University of Bristol)
Abstract
Aerial electroreception is the ability of some arthropods (e.g., bees) to detect electric fields in the environment. I present an overview of our attempts to model the electromechanics of this recently discovered phenomenon and how it might contribute to the sensory biology of arthropods. This is joint work with Daniel Robert and Ryan Palmer.


 

Fri, 07 Jun 2024

15:00 - 16:00
L5

Applied Topology TBC

Ximena Fernandez
(Mathematical Institute, University of Oxford)

The join button will be published 30 minutes before the seminar starts (login required).

Mon, 10 Jun 2024

14:00 - 15:00
Lecture Room 3

TBA

Prof. Joel Tropp
(California Institute of Technology, USA)
Abstract

TBA

Mon, 10 Jun 2024
15:30
Lecture Room 3

TBC

Prof Amanda Turner
(University of Leeds)
Tue, 11 Jun 2024

16:00 - 17:00
C2

TBC

Florent Baudier
Abstract

to follow

Thu, 13 Jun 2024

12:00 - 13:00
L3

The mechanics of physical knots: from shoelaces to surgical sutures

Pedro M. Reis
(EPFL)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

 

Pedro M. Reis

Flexible Structures Laboratory, 

Institute of Mechanical Engineering,

Ecole Polytechnique Fédérale de Lausanne (EPFL), 

Pedro Miguel Reis is a Professor of Mechanical Engineering at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Prof. Reis received a B.Sc. in Physics from the University of Manchester, UK (1999), a Certificate of Advanced Studies in Mathematics (Part III Maths) from St. John’s College and DAMTP, University of Cambridge (2000), and a Ph.D. in physics from the University of Manchester (2004). He was a postdoc at the City College of New York (2004-2005) and at the CNRS/ESPCI in Paris (2005-2007). He joined MIT in 2007 as an Instructor in Applied Mathematics. In 2010, he moved to MIT’s School of Engineering, with dual appointments in Mechanical Engineering and Civil & Environmental Engineering, first as the Esther and Harold E. Edgerton Assistant Professor and, after 2014, as Gilbert W. Winslow Associate Professor. In October 2013, the Popular Science magazine named Prof. Reis to its 2013 “Brilliant 10” list of young stars in Science and Technology. In 2021, he was the President of the Society of Engineering Science (SES). Prof. Reis has also received the 2014 CAREER Award (NSF), the 2016 Thomas J.R. Hughes Young Investigator Award (Applied Mechanics Division of the ASME), the 2016 GSOFT Early Career Award for Soft Matter Research (APS), and he is a Fellow of the American Physical Society (APS).

Abstract

Even though most of us tie our shoelaces "wrongly," knots in ropes and filaments have been used as functional structures for millennia, from sailing and climbing to dewing and surgery. However, knowledge of the mechanics of physical knots is largely empirical, and there is much need for physics-based predictive models. Tight knots exhibit highly nonlinear and coupled behavior due to their intricate 3D geometry, large deformations, self-contact, friction, and even elasto-plasticity. Additionally, tight knots do not show separation of the relevant length scales, preventing the use of centerline-based rod models. In this talk, I will present an overview of recent work from our research group, combining precision experiments, Finite Element simulations, and theoretical analyses. First, we study the mechanics of two elastic fibers in frictional contact. Second, we explore several different knotted structures, including the overhand, figure-8, clove-hitch, and bowline knots. These knots serve various functions in practical settings, from shoelaces to climbing and sailing. Lastly, we focus on surgical knots, with a particularly high risk of failure in clinical settingsincluding complications such as massive bleeding or the unraveling of high-tension closures. Our research reveals a striking and robust power law, with a general exponent, between the mechanical strength of surgical knots, the applied pre-tension, and the number of throws, providing new insights into their operational and safety limits. These findings could have potential applications in the training of surgeons and enhanced control of robotic-assisted surgical devices.

 

Thu, 13 Jun 2024
16:00
L4

TBC

Dr Ivan Guo
(Monash University, Melbourne)
Further Information

Please join us for reshments outside the lecture room from 1530.

Fri, 14 Jun 2024

15:00 - 16:00
L5

The bifiltration of a relation, extended Dowker duality and studying neural representations

Melvin Vaupel
(Norweign University of Science and Technology)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

To neural activity one may associate a space of correlations and a space of population vectors. These can provide complementary information. Assume the goal is to infer properties of a covariate space, represented by ochestrated activity of the recorded neurons. Then the correlation space is better suited if multiple neural modules are present, while the population vector space is preferable if neurons have non-convex receptive fields. In this talk I will explain how to coherently combine both pieces of information in a bifiltration using Dowker complexes and their total weights. The construction motivates an interesting extension of Dowker’s duality theorem to simplicial categories associated with two composable relations, I will explain the basic idea behind it’s proof.

Fri, 14 Jun 2024
16:00
L1

TBA

Delaram Kahrobaei
(City University, New York)
Tue, 02 Jul 2024

16:00 - 17:00
tbc

TBC

Jorge Castillejos Lopez
(UNAM Mexico)
Abstract

to follow

Tue, 19 Nov 2024
16:00

TBA

Jean-Philippe Bouchaud
(Ecole Normale Supérieure and Capital Fund Management)
Abstract

TBA