Forthcoming events in this series


Tue, 22 Jan 2019
14:15
L4

Generalisations of the (Pin,osp(1|2)) Howe duality

Roy Oste
(University of Ghent)
Abstract

The classical Dirac operator is part of an osp(1|2) realisation inside the Weyl-Clifford algebra which is Pin-invariant. This leads to a multiplicity-free decomposition of the space of spinor-valued polynomials in irreducible modules for this Howe dual pair. In this talk we review an abstract generalisation A of the Weyl algebra that retains a realisation of osp(1|2) and we determine its centraliser algebra explicitly. For the special case where A is a rational Cherednik algebra, the centralizer algebra provides a refinement of the previous decomposition whose analogue was no longer irreducible in general. As an example, for the  group S3 in specific, we will examine the finite-dimensional irreducible modules of the centraliser algebra.

Tue, 20 Nov 2018
14:15
L4

A Beilinson-Bernstein Theorem for p-adic analytic quantum groups

Nicolas Dupre
(Cambridge)
Abstract

The celebrated localisation theorem of Beilinson-Bernstein asserts that there is an equivalence between representations of a Lie algebra and modules over the sheaf of differential operators on the corresponding flag variety. In this talk we discuss certain analogues of this result in various contexts. Namely, there is a localisation theorem for quantum groups due to Backelin and Kremnizer and, more recently, Ardakov and Wadsley also proved a localisation theorem working with certain completed enveloping algebras of p-adic Lie algebras. We then explain how to combine the ideas involved in these results to construct
a p-adic analytic quantum flag variety and a category of D-modules on it, and we show that the global section functor on these D-modules yields an equivalence of categories.

Tue, 13 Nov 2018

14:15 - 15:30
L4

Even Artin groups of FC-type are polyfree.

Conchita Martinez-Perez
(Universidad de Zaragoza)
Abstract

Polyfree groups are defined as groups having a series of normal
subgroups such that each sucessive quotient is free. This property
imples locally indicability and therefore also right orderability. Right
angled Artin groups are known to be polyfree (a result shown
independently by Duchamp-Krob, Howie and Hermiller-Sunic). Here we show
that Artin FC-groups for which all the defining relation are of even
type  are also polyfree. This is a joint work with Ruven Blasco and Luis
Paris.

Tue, 30 Oct 2018
14:15
L4

Representation theoretic Dirac operators

Salah Mehdi
(Université de Lorraine)
Abstract

I will explain how Dirac operators provide precious information about geometric and algebraic aspects of representations of real Lie groups. In particular, we obtain an explicit realisation of representations, leading terms in the asymptotics of characters and a precise connection with nilpotent orbits.

Tue, 16 Oct 2018

14:15 - 16:30
L4

Weak commutativity of groups

Dessislava Kochloukova
(Campinas)
Abstract

We will discuss some recent results with Martin Bridson about 
Sidki's construction X(G). In particular, if G is a finitely presented
group then X(G) is a finitely presented group. We will discuss as well the
result that if G has polynomial isoperimetric function and the maximal
metabelian quotient of G is virtually nilpotent then X(G) has polynomial
isoperimetric function. Part of the arguments we will use have homological
nature.

Tue, 09 Oct 2018

14:15 - 15:30
L4

Abstract regular polytopes and Y-shaped presentations for subgroups of the Monster sporadic simple group

Dima Pasechnik
(Oxford)
Abstract

Abstract regular polytopes are finite quotients of Coxeter complexes
with string diagram, satisfying a natural intersection property, see
e.g. [MMS2002]. They arise in a number of geometric and group-theoretic
contexts. The first class of such objects, beyond the
well-understood examples coming from finite and affine Coxeter groups,
are locally toroidal cases, e.g.  extensions of quotients of the affine
F_4 complex [3,3,4,3].  In 1996 P.McMullen & E.Schulte constructed a
number of examples of locally toroidal abstract regular polytopes of
type [3,3,4,3,3], and conjectured completeness of their list. We
construct counterexamples to the conjecture using a Y-shaped
presentation for a subgroup of the Monster, and discuss various
related questions.
 

Thu, 27 Sep 2018
14:00
C2

A generalization of Steinberg theory and an exotic moment map

Kyo Nishiyama
(Aoyama Gakuin University Tokyo)
Abstract

For a reductive group $ G $, Steinberg established a map from the Weyl group to nilpotent $ G $-orbits using momentmaps on double flag varieties.  In particular, in the case of the general linear group, he re-interpreted the Robinson-Schensted correspondence between the permutations and pairs of standard tableaux of the same shape in terms of product of complete flags.

We generalize his theory to the case of symmetric pairs $ (G, K) $, and obtained two different maps.  In the case where $ (G, K) = (\GL_{2n}, \GL_n \times \GL_n) $, one of the maps is a generalized Steinberg map, which induces a generalization of the RS correspondence for degenerate permutations.  The other is an exotic moment map, which maps degenerate permutations to signed Young diagrams, i.e., $ K $-orbits in the Cartan space $ (\lie{g}/\lie{k})^* $.

We explain geometric background of the theory and combinatorial procedures which produces the above mentioned maps.

This is an on-going joint work with Lucas Fresse.
 

Fri, 15 Jun 2018

15:00 - 16:00
L6

"A counterexample to the first Zassenhaus conjecture".

Florian Eisele
(City University London)
Abstract

There are many interesting problems surrounding the unit group U(RG) of the ring RG, where R is a commutative ring and G is a finite group. Of particular interest are the finite subgroups of U(RG). In the seventies, Zassenhaus conjectured that any u in U(ZG) is conjugate, in the group U(QG), to an element of the form +/-g, where g is an element of the group G. This came to be known as the "(first) Zassenhaus conjecture". I will talk about the recent construction of a counterexample to this conjecture (this is joint work with L. Margolis), and recent work on related questions in the modular representation theory of finite groups.

Fri, 15 Jun 2018

12:00 - 13:00
C6

Character correspondences for symmetric and complex reflection groups.

Eugenio Giannelli
(University of Cambridge)
Abstract

Abstract: In 2016 Ayyer, Prasad and Spallone proved that the restriction to 
S_{n-1} of any odd degree irreducible character of S_n has a unique irreducible 
constituent of odd degree.
This result was later generalized by Isaacs, Navarro Olsson and Tiep.
In this talk I will survey some recent developments on this topic.

Tue, 12 Jun 2018
14:15
L4

Decomposition spaces: theory and applications

Andrew Tonks
(Leicester)
Abstract


Decomposition (aka unital 2-Segal) spaces are simplicial ∞-groupoids with a certain exactness property: they take pushouts of active (end-point preserving) along inert (distance preserving) maps in the simplicial category Δ to pullbacks. They encode the information needed for an 'objective' generalisation of the notion of incidence (co)algebra of a poset, and motivating examples include the decomposition spaces for (derived) Hall algebras, the Connes-Kreimer algebra of trees and Schmitt's algebra of graphs. In this talk I will survey recent activity in this area, including some work in progress on a categorification of (Hopf) bialgebroids.
This is joint work with Imma Gálvez and Joachim Kock.
 

Tue, 22 May 2018

14:15 - 15:30
L4

g-algebras and the representations of their invariant subrings.

Anthony Joseph
(Weizmann Institute)
Abstract

Let $\mathfrak g$ be a semisimple Lie algebra.  A $\mathfrak g$-algebra is an associative algebra $R$ on which $\mathfrak g$ acts by derivations.  There are several significant examples.  Let $V$ a finite dimensional $\mathfrak g$ module and take  $R=\mathrm{End} V$ or $R=D(V)$ being the ring of derivations on  $V$ . Again take $R=U(\mathfrak g)$.   In all these cases  $ S=U(\mathfrak g)\otimes R$ is again a $\mathfrak g$-algebra.  Finally let $T$ denote the subalgebra of invariants of $S$.
 
For the first choice of $R$ above the representation theory of $T$ can be rather explicitly described in terms of Kazhdan-Lusztig polynomials.  In the second case the simple $T$ modules can be described in terms of the simple $D(V)$ modules.  In the third case it is shown that all simple $T$ modules are finite dimensional, despite the fact that $T$ is not a PI ring,  except for the case $\mathfrak  g =\mathfrak {sl}(2)$.

Tue, 24 Apr 2018

14:15 - 15:15
L4

Short Laws for Finite Groups and Residual Finiteness Growth

Henry Bradford
(Goettingen)
Abstract

 A law for a group G is a non-trivial equation satisfied by all tuples of elements in G. We study the length of the shortest law holding in a finite group. We produce new short laws holding (a) in finite simple groups of Lie type and (b) simultaneously in all finite groups of small order. As an application of the latter we obtain a new lower bound on the residual finiteness growth of free groups. This talk is based on joint work with Andreas Thom.

Wed, 07 Mar 2018

10:00 - 12:00
L5

Hall algebras of coherent sheaves on toric varieties over F_1.

Prof. Matt Szczesny
(Boston University)
Abstract

Hall algebras of categories of quiver representations and coherent sheaves

on smooth projective curves over F_q recover interesting

representation-theoretic objects such as quantum groups and their

generalizations. I will define and describe the structure of the Hall

algebra of coherent sheaves on a projective variety over F_1, with P^2 as

the main example. Examples suggest that it should be viewed as a degenerate

q->1 limit of its counterpart over F_q.

Tue, 06 Mar 2018
14:15
L4

Morita equivalence of Peter-Weyl Iwahori algebras

Allen Moy
(Hong Kong University of Science and Technology)
Abstract

The Peter-Weyl idempotent of a parahoric subgroup is the sum of the idempotents of irreducible representations which have a nonzero Iwahori fixed vector. The associated convolution algebra is called a Peter-Weyl Iwahori algebra.  We show any Peter-Weyl Iwahori algebra is Morita equivalent to the Iwahori-Hecke algebra.  Both the Iwahori-Hecke algebra and a Peter-Weyl Iwahori algebra have a natural C*-algebra structure, and the Morita equivalence preserves irreducible hermitian and unitary modules.  Both algebras have another anti-involution denoted as •, and the Morita equivalence preserves irreducible and unitary modules for the • involution.   This work is joint with Dan Barbasch.
 

Tue, 27 Feb 2018
14:15
L4

The regular representations of GL_N over finite local principal ideal rings

Alexander Stasinski
(Durham University)
Abstract

Let $F$ be a non-Archimedean local field with ring of integers $\mathcal O$ and maximal ideal $\mathfrak p$. T. Shintani and G. Hill independently introduced a large class of smooth representations of $GL_N(\mathcal O)$, called regular representations. Roughly speaking they correspond to elements in the Lie algebra $M_N(\mathcal O)$ which are regular mod $\mathfrak p$ (i.e, having centraliser of dimension $N$). The study of regular representations of $GL_N(\mathcal O)$ goes back to Shintani in the 1960s, and independently and later, Hill, who both constructed the regular representations with even conductor, but left the much harder case of odd conductor open. In recent simultaneous and independent work, Krakovski, Onn and Singla gave a construction of the regular representations of $GL_N(\mathcal O)$ when the residue characteristic of $\mathcal O$ is not $2$.

In this talk I will present a complete construction of all the regular representations of $GL_N(\mathcal O)$. The approach is analogous to, and motivated by, the construction of supercuspidal representations of $GL_N(F)$ due to Bushnell and Kutzko. This is joint work with Shaun Stevens.
 

Tue, 06 Feb 2018
14:15
L4

Dual singularities in exceptional type nilpotent cones

Paul Levy
(University of Lancaster)
Abstract

It is well-known that nilpotent orbits in $\mathfrak{sl}_n(\mathbb C)$ correspond bijectively with the set of partitions of $n$, such that the closure (partial) ordering on orbits is sent to the dominance order on partitions. Taking dual partitions simply turns this poset upside down, so in type $A$ there is an order-reversing involution on the poset of nilpotent orbits. More generally, if $\mathfrak g$ is any simple Lie algebra over $\mathbb C$ then Lusztig-Spaltenstein duality is an order-reversing bijection from the set of special nilpotent orbits in $\mathfrak g$ to the set of special nilpotent orbits in the Langlands dual Lie algebra $\mathfrak g^L$.
It was observed by Kraft and Procesi that the duality in type $A$ is manifested in the geometry of the nullcone. In particular, if two orbits $\mathcal O_1<\mathcal O_2$ are adjacent in the partial order then so are their duals $\mathcal O_1^t>\mathcal O_2^t$, and the isolated singularity attached to the pair $(\mathcal O_1,\mathcal O_2)$ is dual to the singularity attached to $(\mathcal O_2^t,\mathcal O_1^t)$: a Kleinian singularity of type $A_k$ is swapped with the minimal nilpotent orbit closure in $\mathfrak{sl}_{k+1}$ (and vice-versa). Subsequent work of Kraft-Procesi determined singularities associated to such pairs in the remaining classical Lie algebras, but did not specifically touch on duality for pairs of special orbits.
In this talk, I will explain some recent joint research with Fu, Juteau and Sommers on singularities associated to pairs $\mathcal O_1<\mathcal O_2$ of (special) orbits in exceptional Lie algebras. In particular, we (almost always) observe a generalized form of duality for such singularities in any simple Lie algebra.
 

Tue, 30 Jan 2018

14:15 - 15:15
L4

2D problems in groups

Nikolay Nikolov
(Oxford University)
Abstract
I will discuss a conjecture about stabilisation of deficiency in finite index subgroups and relate it to the D2 Problem of C.T.C. Wall and the Relation Gap problem for group presentations.
We can prove the pro-$p$ version of the conjecture, as well as its higher dimensional abstract analogues. Key ingredients are, first a classic result of Wall on the existence of CW complexes with prescribed cellular chain complex, and second, a simple criterion for freeness of modules over group rings. This is joint work with Aditi Kar.
Tue, 28 Nov 2017
14:15
L4

Dirac induction for rational Cherednik algebras

Marcelo De Martino
(Oxford University)
Abstract

In this joint work with D. Ciubotaru, we introduce the notion of local and global indices of Dirac operators for a rational Cherednik algebra H, with underlying reflection group G. In the local theory, I will report on some relations between the (local) Dirac index of a simple module in category O, the graded G-character and the composition series polynomials for standard modules. In the global theory, we introduce an "integral-reflection" module over which we define and compute the index of a (global) Dirac operator and show that the index is independent of the parameters. If time permits, I will discuss some local-global relations.

Tue, 14 Nov 2017

14:15 - 15:15
L4

Representations of pseudo-reductive groups

Dr David Stewart
(School of Mathematics & Statistics Newcastle University)
Abstract

Pseudo-reductive groups are smooth connected linear algebraic groups over a field k whose k-defined unipotent radical is trivial. If k is perfect then all pseudo-reductive groups are reductive, but if k is imperfect (hence of characteristic p) then one gets a strictly larger collection of groups. They come up in a number of natural situations, not least when one wishes to say something about the simple representations of all smooth connected linear algebraic groups. Recent work by Conrad-Gabber-Prasad has made it possible to reduce the classification of the simple representations of pseudo-reductive groups to the split reductive case. I’ll explain how. This is joint work with Mike Bate.

Tue, 31 Oct 2017
14:15
L4

Multiplicity-free primitive ideals and W-algebras

Alexander Premet
(University of Manchester)
Abstract

In my talk I will explain how to relate 1-dimensional representations of finite W-algebras with multiplicity free primitive ideals of universal enveloping algebras and representations of minimal dimension of the corresponding reduced enveloping algebras (Humphreys' conjecture). I will also mention some open problems in the field.

Tue, 24 Oct 2017

14:15 - 15:15
L4

Dimers with boundary, associated algebras and module categories

Karin Baur
(Graz)
Abstract

Dimer models with boundary were introduced in joint work with King and Marsh as a natural
generalisation of dimers. We use these to derive certain infinite dimensional algebras and
consider idempotent subalgebras w.r.t. the boundary.
The dimer models can be embedded in a surface with boundary. In the disk case, the
maximal CM modules over the boundary algebra are a Frobenius category which
categorifies the cluster structure of the Grassmannian.

 

Tue, 17 Oct 2017

14:15 - 15:15
L4

From classical tilting to 2-term silting

Aslak Buan
(Trondheim)
Abstract

We give a short reminder about central results of classical tilting theory, 
including the Brenner-Butler tilting theorem, and
homological properties of tilted and quasi-tilted algebras. We then discuss 
2-term silting complexes and endomorphism algebras of such objects,
and in particular show that some of these classical results have very natural 
generalizations in this setting.
(joint work with Yu Zhou)

Tue, 16 May 2017
14:15
L4

Cherednik algebras at infinity

Maxim Nazarov
(York University)
Abstract

Heckman introduced N operators on the space of polynomials in N variables, such that these operators form a covariant set relative to permutations of the operators and variables, and such that Jack symmetric polynomials are eigenfunctions of the power sums of these operators. We introduce the analogues of these N operators for Macdonald symmetric polynomials, by using Cherednik operators. The latter operators pairwise commute, and Macdonald polynomials are eigenfunctions of their power sums. We compute the limits of our operators at N → ∞ . These limits yield a Lax operator for Macdonald symmetric functions. This is a joint work with Evgeny Sklyanin.

Wed, 03 May 2017

14:00 - 15:00
L3

On finiteness properties of the Johnson filtrations

Mikhail Ershov
(Virginia)
Abstract

Let $A$ denote either the automorphism group of the free group of rank $n$ or the mapping class group of an orientable surface of genus $n$ with at most 1 boundary component, and let $G$ be either the subgroup of IA-automorphisms or the Torelli subgroup of $A$, respectively. I will discuss various finiteness properties of subgroups containing $G_N$, the $N$-th term of the lower central series of $G$, for sufficiently small $N$. In particular, I will explain why
(1) If $n \geq 4N-1$, then any subgroup of G containing $G_N$ (e.g. the $N$-th term of the Johnson filtration) is finitely generated
(2) If $n \geq 8N-3$, then any finite index subgroup of $A$ containing $G_N$ has finite abelianization.
The talk will be based on a joint work with Sue He and a joint work with Tom Church and Andrew Putman

Tue, 02 May 2017
14:15
L4

Representations of p-adic groups via geometric invariant theory

Beth Romano
(Cambridge University)
Abstract

Let G be a split reductive group over a finite extension k of Q_p. Reeder and Yu have given a new construction of supercuspidal representations of G(k) using geometric invariant theory. Their construction is uniform for all p but requires as input stable vectors in certain representations coming from Moy-Prasad filtrations. In joint work, Jessica Fintzen and I have classified the representations of this kind which contain stable vectors; as a corollary, the construction of Reeder-Yu gives new representations when p is small. In my talk, I will give an overview of this work, as well as explicit examples for the case when G = G_2. For these examples, I will explicitly describe the locus of all stable vectors, as well as the Langlands parameters which correspond under the local Langlands correspondence to the representations of G(k). 

Tue, 07 Mar 2017
14:15
L4

The rationality of blocks of quasi-simple finite groups

Niamh Farrell
(City University London)
Abstract

The Morita Frobenius number of an algebra is the number of Morita equivalence classes of its Frobenius twists. Morita Frobenius numbers were introduced by Kessar in 2004 in the context of Donovan’s Conjecture in block theory. I will present the latest results of a project in which we aim to calculate the Morita Frobenius numbers of the blocks of quasi-simple finite groups. I will also discuss the importance of a recent result of Bonnafe-Dat-Rouquier for our methods, and explain the relationship between Morita Frobenius numbers and Donovan’s Conjecture. 

Tue, 28 Feb 2017
14:15
L4

Sklyanin algebras are minimal surfaces

Sue Sierra
(University of Edinburgh)
Abstract

In the ongoing programme to classify noncommutative projective surfaces (connected graded noetherian domains of Gelfand-Kirillov dimension three) a natural question is:  what are the minimal models within a birational class?  It is not even clear a priori what the correct definition is of a minimal model in this context.

We show that a generic Sklyanin algebra (a noncommutative analogue of P^2) satisfies the surprising property that it has no birational connected graded noetherian overrings, and explain why this is a reasonable definition of 'minimal model.' We show also that the noncommutative versions of P^1xP^1 and of the Hirzebruch surface F_2 are minimal.
This is joint work in progress with Dan Rogalski and Toby Stafford.

 

Tue, 21 Feb 2017

14:15 - 15:15
L4

Growth, generation, and conjectures of Gowers and Viola

Aner Shalev
(Hebrew University of Jerusalem)
Abstract

I will discuss recent results in finite simple groups. These include growth, generation (with a number theoretic flavour), and conjectures of Gowers and Viola on mixing and complexity whose proof requires representation theory as a main tool.
 

Tue, 07 Feb 2017
14:15
L4

Modular W-algebras and reduced enveloping algebras

Simon Goodwin
(University of Birmingham)
Abstract

We give an overview of joint work with Lewis Topley on modular W-algebras. In particular, we outline the classification 1-dimensional modules for modular W-algebras for gl_n, which in turn this leads to a classification of minimal dimensional modules for reduced enveloping algebras for gl_n.

Tue, 24 Jan 2017

14:15 - 15:15
L4

An Euler-Poincare formula for a depth zero Bernstein projector

Allen Moy
(Hong Kong University of Science and Technology)
Abstract


Work of Bezrukavnikov-Kazhdan-Varshavsky uses an equivariant system of trivial idempotents of Moy-Prasad groups to obtain an
Euler-Poincare formula for the r-depth Bernstein projector. We establish an Euler-Poincare formula for the projector to an individual depth zero Bernstein component in terms of an equivariant system of Peter-Weyl idempotents of parahoric subgroups P associated to a block of the reductive quotient of P.  This work is joint with Dan Barbasch and Dan Ciubotaru.
 

Tue, 17 Jan 2017

14:15 - 15:15
L4

Endo-parameters and the Local Langlands Correspondence for classical groups

Shaun Stevens
(University of East Anglia)
Abstract

The local Langlands correspondence for classical groups gives a natural finite-to-one map between certain representations of p-adic classical groups and certain self-dual representations of the absolute Weil group of a p-adic field (and more). On both sides of the correspondence, the description of the representations involves a ``wild part'' of more arithmetic nature and a ``tame part'' of more geometric nature, and the notion of endo-parameter (due to Bushnell--Henniart for general linear groups) is designed to describe the ``wild part'' of the Langlands correspondence. I will explain what this means and the connection with representations of affine Hecke algebras. This is joint work with Blondel--Henniart, with Lust, and with Kurinczuk--Skodlerack.

Tue, 15 Nov 2016

14:15 - 15:15
L4

Representations of finite groups over self-injective rings

Greg Stevenson
(Bielefeld)
Abstract

 For a group algebra over a self-injective ring
there are two stable categories: the usual one modulo projectives
and a relative one where one works modulo representations
which are free over the coefficient ring.
I'll describe the connection between these two stable categories,
which are "birational" in an appropriate sense.
I'll then make some comments on the specific case
where the coefficient ring is Z/nZ and give a more
precise description of the relative stable category.

Tue, 08 Nov 2016
14:15
L4

Decomposition rules for representations of p-adic groups

Max Gurevich
(Weizmann Institute)
Abstract


What are the irreducible constituents of a smooth representation of a p-adic group that is constructed through parabolic induction? In the case of GL_n this is the study of the multiplicative behaviour of irreducible representations in the Bernstein-Zelevinski ring. Strikingly, the same decomposition problem can be reformulated through various Lie-theoretic settings of type A, such as canonical bases in quantum groups, representations of affine Hecke algebras, quantum affine Lie algebras, or more recently, KLR algebras. While partially touching on some of these phenomena, I will present new results on the problem using mostly classical tools. In particular, we will see how introducing a width invariant to an irreducible representation can circumvent the complexity involved in computations of Kazhdan-Lusztig polynomials.

Tue, 01 Nov 2016

14:15 - 15:15
L4

Recovering automorphisms of quantum spaces

J Grabowski
(Lancaster)
Abstract

It has long been expected, and is now proved in many important cases, 
that quantum algebras are more rigid than their classical limits. That is, they 
have much smaller automorphism groups. This begs the question of whether this 
broken symmetry can be recovered.

I will outline an approach to this question using the ideas of noncommutative 
projective geometry, from which we see that the correct object to study is a 
groupoid, rather than a group, and maps in this groupoid are the replacement 
for automorphisms. I will illustrate this with the example of quantum 
projective space.

This is joint work with Nicholas Cooney (Clermont-Ferrand).

Tue, 25 Oct 2016

14:15 - 15:15
L4

On the automorphic spectrum supported on the Borel subgroup

Marcelo De Martino
(Mathematical Institute, University of Oxford)
Abstract

In this talk, we consider a split connected semisimple group G defined over a global field F. Let A denote the ring of adèles of F and K a maximal compact subgroup of G(A) with the property that the local factors of K are hyperspecial at every non-archimedian place. Our interest is to study a certain subspace of the space of square-integrable functions on the adelic quotient G(F)\G(A). Namely, we want to study functions coming from induced representations from an unramified character of a Borel subgroup and which are K-invariant.

Our goal is to describe how the decomposition of such space can be related with the Plancherel decomposition of a graded affine Hecke algebra (GAHA).

The main ingredients are standard analytic properties of the Dedekind zeta-function as well as known properties of the so-called residue distributions, introduced by Heckman-Opdam in their study of the Plancherel decomposition of a GAHA and a result by M. Reeder on the support of the weight spaces of
the anti-spherical  discrete series representations of affine Hecke algebras. These last ingredients are of a purely local nature.


This talk is based on joint work with V. Heiermann and E. Opdam.

Tue, 18 Oct 2016

14:15 - 15:15
L4

Tensor diagrams and Chebyshev polynomials

Lisa Lamberti
(Oxford)
Abstract

Given a complex vector space $V$, consider the ring $R_{a,b}(V)$ of polynomial functions on the space of configurations of $a$ vectors and $b$ covectors which are invariant under the natural action of $SL(V)$. Rings of this type play a central role in representation theory, and their study dates back to Hilbert. Over the last three decades, different bases of these spaces with remarkable properties were found. To explicitly construct, as well as to compare, some of these bases remains a challenging problem, already open when $V$ is 3-dimensional. 
In this talk, I report on recent developments in the 3-dimensional setting of this theory.

Tue, 11 Oct 2016
14:15
L4

Categorical matrix factorizations

Petter Bergh
(NTNU Trondheim)
Abstract

We define categorical matrix factorizations in a suspended additive category, 
with respect to a central element. Such a factorization is a sequence of maps 
which is two-periodic up to suspension, and whose composition equals the 
corresponding coordinate map of the central element. When the category in 
question is that of free modules over a commutative ring, together with the 
identity suspension, then these factorizations are just the classical matrix 
factorizations. We show that the homotopy category of categorical matrix 
factorizations is triangulated, and discuss some possible future directions. 
This is joint work with Dave Jorgensen.

Wed, 01 Jun 2016

15:00 - 16:00
L6

Homology torsion growth in right angled groups

Miklos Abert
(Renyi Institute Budapest)
Abstract

Torsion in homology are invariants that have received increasing attention over the last twenty years, by the work of Lück, Bergeron, Venkatesh and others. While there are various vanishing results, no one has found a finitely presented group where the torsion in the first homology is exponential over a normal chain with trivial intersection. On the other hand, conjecturally, every 3-manifold group should be an example.

A group is right angled if it can be generated by a list of infinite order elements, such that every element commutes with its neighbors. Many lattices in higher rank Lie groups (like SL(n,Z), n>2) are right angled. We prove that for a right angled group, the torsion in the first homology has subexponential growth for any Farber sequence of subgroups, in particular, any chain of normal subgroups with trivial intersection. We also exhibit right angled cocompact lattices in SL(n,R) (n>2), for which the Congruence Subgroup Property is not known. This is joint work with Nik Nikolov and Tsachik Gelander.

Tue, 24 May 2016

14:15 - 15:15
L4

Thurston and Alexander norms, and the Bieri-Neumann-Strebel invariants for free-by-cyclic groups

Dawid Kielak
(Bielefeld)
Abstract

We will introduce the Thurston norm in the setting of 3-manifold groups, and show how the techniques coming from L2-homology allow us to extend its definition to the setting of free-by-cyclic groups.
We will also look at the relationship between this Thurston norm and the Alexander norm, and the BNS invariants, in particular focusing on the case of ascending HNN extensions of the 2-generated free group.

Tue, 17 May 2016

14:15 - 15:15
L4

Bounds of Minkowski type for finite complex linear groups - the answer to a question of Serre

Michael Collins
(Oxford)
Abstract


In 1878, Jordan showed that there is a function f on the set of natural numbers such that, if $G$ is a finite subgroup of $GL(n,C)$, then $G$ has an abelian normal subgroup of index at most $f(n)$. Early bounds were given by Frobenius and Schur, and close to optimal bounds were given by Weisfeiler in unpublished work in 1984 using the classification of finite simple groups; about ten years ago I obtained the optimal bounds. Crucially, these are "absolute" bounds; they do not address the wider question of divisibility of orders.

In 1887, Minkowski established a bound for the order of a Sylow p-subgroup of a finite subgroup of GL(n,Z). Recently, Serre asked me whether I could obtain Minkowski-like results for complex linear groups, and posed a very specific question. The answer turns out to be no, but his suggestion is actually quite close to the truth, and I shall address this question in my seminar. The answer addresses the divisibility issue in general, and it turns out that a central technical theorem on the structure of linear groups from my earlier work which there was framed as a replacement theorem can be reinterpreted as an embedding theorem and so can be used to preserve divisibility.

Tue, 26 Apr 2016

14:15 - 15:30
L4

Multiserial and Special Multiserial Algebras

Sibylle Schroll
(Leicester)
Abstract

The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike  biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.

Tue, 08 Mar 2016

14:15 - 15:30
L4

Strongly dense subgroups of semisimple algebraic groups.

Emmanuel Breuillard
(Orsay and Munster)
Abstract

A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup  Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.

Tue, 01 Mar 2016

14:15 - 15:30
L4

There And Back Again: A Localization's Tale.

Sian Fryer
(Leeds)
Abstract

The prime spectrum of a quantum algebra has a finite stratification in terms
of a set of distinguished primes called H-primes, and we can study these
strata by passing to certain nice localizations of the algebra.  H-primes
are now starting to show up in some surprising new areas, including
combinatorics (totally nonnegative matrices) and physics, and we can borrow
techniques from these areas to answer questions about quantum algebras and
their localizations.    In particular, we can use Grassmann necklaces -- a
purely combinatorial construction -- to study the topological structure of
the prime spectrum of quantum matrices.

Tue, 23 Feb 2016

14:15 - 15:30
L4

Discrete triangulated categories

David Pauksztello
(Manchester)
Abstract
This is a report on joint work with Nathan Broomhead and David Ploog.
 
The notion of a discrete derived category was first introduced by Vossieck, who classified the algebras admitting such a derived category. Due to their tangible nature, discrete derived categories provide a natural laboratory in which to study concretely many aspects of homological algebra. Unfortunately, Vossieck’s definition hinges on the existence of a bounded t-structure, which some triangulated categories do not possess. Examples include triangulated categories generated by ‘negative spherical objects’, which occur in the context of higher cluster categories of type A infinity. In this talk, we compare and contrast different aspects of discrete triangulated categories with a view toward a good working definition of such a category.
 

 
Tue, 16 Feb 2016

14:15 - 15:15
L4

Formal degrees of unipotent discrete series representations of semisimple $p$-adic groups

Dan Ciubotaru
(Oxford)
Abstract

The formal degree is a fundamental invariant of a discrete series representation which generalizes the notion of dimension from finite dimensional representations. For discrete series with unipotent cuspidal support, a formula for formal degrees, conjectured by Hiraga-Ichino-Ikeda, was verified by Opdam (2015). For split exceptional groups, this formula was previously known from the work of Reeder (2000). I will present a different interpretation of the formal degrees of unipotent discrete series in terms of the nonabelian Fourier transform (introduced by Lusztig in the character theory of finite groups of Lie type) and certain invariants arising in the elliptic theory of the affine Weyl group. This interpretation relates to recent conjectures of Lusztig about `almost characters' of p-adic groups. The talk is based on joint work with Eric Opdam.

Tue, 26 Jan 2016

14:15 - 15:30
L4

Extensions of modules for graded Hecke algebras

Kei Yuen Chan
(Amsterdam)
Abstract

Graded affine Hecke algebras were introduced by Lusztig for studying the representation theory of p-adic groups. In particular, some problems about extensions of representations of p-adic groups can be transferred to problems in the graded Hecke algebra setting. The study of extensions gives insight to the structure of various reducible modules. In this talk, I shall discuss some methods of computing Ext-groups for graded Hecke algebras.
The talk is based on arXiv:1410.1495, arXiv:1510.05410 and forthcoming work.

Tue, 01 Dec 2015

14:15 - 15:15
L4

Uniform exponential growth for linear groups

Peter Varju
(Cambridge)
Abstract

Abstract: This is a joint work with E. Breuillard.

A conjecture of Breuillard asserts that for every positive integer d, there is a positive constant c such that the following holds. Let S be a finite subset of GL(d,C) that generates a group, which is not virtually nilpotent. Then |S^n|>exp(cn) for all n.
Considering an algebraic number a that is not a root of unity and the semigroup generated by the affine transformations x-> ax+1, x-> ax+1, the above conjecture implies that the Mahler measure of a is at least 1+c' for some c'>0 depending on c. This property is known as Lehmer's conjecture.

I will talk about the converse of this implication, namely that Lehmer's conjecture implies the uniform growth conjecture of
Breuillard.