Thu, 09 Feb 2023
16:00
L4

Gowers uniformity of arithmetic functions in short intervals

Joni Teräväinen
(University of Turku)
Abstract

I will present results on short sums of arithmetic functions (in particular the von Mangoldt and divisor functions) twisted by polynomial exponential phases or more general nilsequence phases. These results imply the Gowers uniformity of suitably normalised versions of these functions in intervals of length X^c around X for suitable values of c (depending on the function and on whether one considers all or almost all short sums). I will also discuss an application to an averaged form of the Hardy-Littlewood conjecture. This is based on joint works with Kaisa Matomäki, Maksym Radziwiłł, Xuancheng Shao and Terence Tao.

Thu, 09 Feb 2023
15:00
L1

Geometric finiteness and surface group extensions

Jacob Russell
Abstract

There is a deep analogy between Kleinaian groups and subgroups of the mapping class group. Inspired by this, Farb and Mosher defined convex cocompact subgroups of the mapping class group in analogy with convex cocompact Kleinian groups. These subgroups have since seen immense study, producing surprising applications to the geometry of surface group extension and surface bundles.  In particular, Hamenstadt plus Farb and Mosher proved that a subgroup of the mapping class groups is convex cocompact if and only if the corresponding surface group extension is Gromov hyperbolic.

Among Kleinian groups, convex cocompact groups are a special case of the geometrically finite groups. Despite the progress on convex cocompactness, no robust notion of geometric finiteness in the mapping class group has emerged.  Durham, Dowdall, Leininger, and Sisto recently proposed that geometric finiteness in the mapping class group might be characterized by the corresponding surface group extension being hierarchically hyperbolic instead of Gromov hyperbolic. We provide evidence in favor of this hypothesis by proving that the surface group extension of the stabilizer of a multicurve is hierarchically hyperbolic.

Thu, 09 Feb 2023
15:00
L6

The HKKP filtration for algebraic stacks

Andres Ibanez Nunez
Abstract

In work of Haiden-Katzarkov-Konsevich-Pandit (HKKP), a canonical filtration, labeled by sequences of real numbers, of a semistable quiver representation or vector bundle on a curve is defined. The HKKP filtration is a purely algebraic object that depends only on a poset, yet it governs the asymptotic behaviour of a natural gradient flow in the space of metrics of the object. 

In this talk, we show that the HKKP filtration can be recovered from the stack of semistable objects, thus generalising the HKKP filtration to other moduli problems of non-linear origin. In particular, we will make sense of the notion of a filtration labelled by sequence of numbers for a point of an algebraic stack.

Thu, 09 Feb 2023

14:00 - 15:00
Lecture Room 3

Toward nonlinear multigrid for nonlinear variational inequalities

Ed Bueler
(University of Alaska Fairbanks)
Abstract

I will start with two very brief surveys.  First is a class of problems, namely variational inequalities (VIs), which generalize PDE problems, and second is a class of solver algorithms, namely full approximation storage (FAS) nonlinear multigrid for PDEs.  Motivation for applying FAS to VIs is demonstrated in the standard mathematical model for glacier surface evolution, a very general VI problem relevant to climate modeling.  (Residuals for this nonlinear and non-local VI problem are computed by solving a Stokes model.)  Some existing nonlinear multilevel VI schemes, based on global (Newton) linearization would seem to be less suited to such general VI problems.  From this context I will sketch some work-in-progress toward the scalable solutions of nonlinear and nonlocal VIs by an FAS-type multilevel method.

Thu, 09 Feb 2023
12:00
L1

Finite time blowup of incompressible flows surrounding compressible bubbles evolving under soft equations of state

Robert Van Gorder
(University of Otago)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

 

Robert, formerly a Research Fellow in Nonlinear Dynamics, and a Glasstone Fellow here at the Mathematical Institute. He is now a Senior Lecturer in the Department of Mathematics at the University of Otago, New Zealand. You can read more about Robert's teaching and research here

Abstract
We explore the dynamics of a compressible fluid bubble surrounded by an incompressible fluid of infinite extent in three-dimensions, constructing bubble solutions with finite time blowup under this framework when the equation of state relating pressure and volume is soft (e.g., with volume singularities that are locally weaker than that in the Boyle-Mariotte law), resulting in a finite time blowup of the surrounding incompressible fluid, as well. We focus on two families of solutions, corresponding to a soft polytropic process (with the bubble decreasing in size until eventual collapse, resulting in velocity and pressure blowup) and a cavitation equation of state (with the bubble expanding until it reaches a critical cavitation volume, at which pressure blows up to negative infinity, indicating a vacuum). Interestingly, the kinetic energy of these solutions remains bounded up to the finite blowup time, making these solutions more physically plausible than those developing infinite energy. For all cases considered, we construct exact solutions for specific parameter sets, as well as analytical and numerical solutions which show the robustness of the qualitative blowup behaviors for more generic parameter sets. Our approach suggests novel -- and perhaps physical -- routes to the finite time blowup of fluid equations.
Wed, 08 Feb 2023
16:00
L6

Minimal disks and the tower construction in 3-manifolds

Ognjen Tosic
(University of Oxford)
Abstract

A fundamental result in 3-manifold topology is the loop theorem: Given a null-homotopic simple closed curve in the boundary of a compact 3-manifold $M$, it bounds an embedded disk in $M$. The standard topological proof of this uses the tower construction due to Papakyriakopoulos. In this talk, I will introduce basic existence and regularity results on minimal surfaces, and show how to use the tower construction to prove a geometric version of the loop theorem due to Meeks--Yau: Given a null-homotopic simple closed curve in the boundary of a compact Riemannian 3-manifold $M$ with convex boundary, it bounds an embedded disk of least area. This also gives an independent proof of the (topological) loop theorem.

Tue, 07 Feb 2023
16:00
C3

Rigidity examples constructed with wreath-like product groups

Bin Sun
(University of Oxford)
Abstract

Wreath-like product groups were introduced recently and used to construct the first positive examples of rigidity conjectures of Connes and Jones. In this talk, I will review those examples, as well as discuss some ideas to construct examples with other rigidity phenomena by modifying the wreath-like product construction.

Tue, 07 Feb 2023

15:30 - 16:30
Virtual

Bounds for subsets of $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ without L-shaped configurations

Sarah Peluse
(Princeton/IAS)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss the difficult problem of proving reasonable bounds in the multidimensional generalization of Szemerédi's theorem and describe a proof of such bounds for sets lacking nontrivial configurations of the form (x,y), (x,y+z), (x,y+2z), (x+z,y) in the finite field model setting.

Tue, 07 Feb 2023
15:30
L4

Constant Scalar Curvature Metrics on Algebraic Manifolds (Part II)

Sean Timothy Paul
(University of Wisconsin Madison)
Abstract

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle $L$ on a compact complex manifold $X$ should be equivalent to an algebro-geometric "stability condition" satisfied by the pair $(X,L)$. The cscK metrics are the critical points of Mabuchi's $K$-energy functional $M$, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff $M$ satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the $K$-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.

Tue, 07 Feb 2023
14:30

Global nonconvex quadratic optimization with Gurobi

Robert Luce
(GUROBI)
Abstract

We consider the problem of solving nonconvex quadratic optimization problems, potentially with additional integrality constraints on the variables.  Gurobi takes a branch-and-bound approach to solve such problems to global optimality, and in this talk we will review the three main algorithmic components that Gurobi uses:  Convex relaxations based on local linearization, globally valid cutting planes, and nonlinear local optimization heuristics.  We will explain how these parts play together, and discuss some of the implementation details.

 

Tue, 07 Feb 2023
14:00
L6

Bornological and condensed mathematics

Federico Bambozzi
(University of Padova)
Abstract

I will explain how bornological and condensed structures can both be described as algebraic theories. I will also show how this permits the construction of functors between bornological and condensed structures. If time permits I will also briefly describe how to compare condensed derived geometry and bornological derived geometry and sketch how they relate to analytic geometry and Arakelov geometry

Tue, 07 Feb 2023

14:00 - 15:00
Virtual

Recent progress on random graph matching problems

Jian Ding
(Peking University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk, I will review some recent progress on random graph matching problems, that is, to recover the vertex correspondence between a pair of correlated random graphs from the observation of two unlabelled graphs. In this talk, I will touch issues of information threshold, efficient algorithms as well as complexity theory. This is based on joint works with Hang Du, Shuyang Gong and Zhangsong Li.

Tue, 07 Feb 2023
14:00

Multigrid solvers for the de Rham complex with optimal complexity in polynomial degree

Pablo Brubeck
Abstract

The numerical solution of elliptic PDEs is often the most computationally intensive task in large-scale continuum mechanics simulations.  High-order finite element methods can efficiently exploit modern parallel hardware while offering very rapid convergence properties.  As the polynomial degree is increased, the efficient solution of such PDEs becomes difficult. In this talk we introduce preconditioners for high-order discretizations. We build upon the pioneering work of Pavarino, who proved in 1993 that the additive Schwarz method with vertex patches and a low-order coarse space gives a  solver for symmetric and coercive problems that is robust to the polynomial degree. 

However, for very high polynomial degrees it is not feasible to assemble or factorize the matrices for each vertex patch, as the patch matrices contain dense blocks, which couple together all degrees of freedom within a cell. The central novelty of the preconditioners we develop is that they have the same time and space complexity as sum-factorized operator application on unstructured meshes of tensor-product cells, i.e., we can solve $A x=b$ with the same complexity as evaluating $b-A x$. Our solver relies on new finite elements for the de Rham complex that enable the blocks in the stiffness matrix corresponding to the cell interiors to become diagonal for scalar PDEs or block diagonal for vector-valued PDEs.  With these new elements, the patch problems are as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. In the non-separable case, themethod can be applied as a preconditioner by approximating the problem with a separable surrogate.  Through the careful use of incomplete factorizations and choice of space decomposition we achieve optimal fill-in in the patch factors, ultimately allowing for optimal-complexity storage and computational cost across the setup and solution stages.

We demonstrate the approach by solving the Riesz maps of $H^1$, $H(\mathrm{curl})$, and $H(\mathrm{div})$ in three dimensions at $p = 15$.


 

Tue, 07 Feb 2023
12:30
C3

Studying occupational mobility using online resume data

Rohit Sahasrabuddhe
Abstract

Data sets of self-reported online resumes are a valuable tool to understand workers' career trajectories and how workers may adapt to the changing demands of employers. However, the sample of workers that choose to upload their resumes online may not be representative of a nation's workforce. To understand the advantages and limitations of these datasets, we analyze a data set of more than 1 Million online resumes and compare the findings with a administrative data from the Current Population Survey (CPS).
 

Tue, 07 Feb 2023

12:00 - 13:15
L3

The stochastic analysis of Euclidean QFTs

Massimiliano Gubinelli
(Mathematical Insitute, Oxford)
Abstract

I will report on a research program which uses ideas from stochastic analysis in the context of constructive Euclidean quantum field theory. Stochastic analysis is the study of measures on path spaces via push-forward from Gaussian measures. The foundational example is the map, introduced by Itô, which sends Brownian motion to a diffusion process solution to a stochastic differential equation. Parisi–Wu's stochastic quantisation is the stochastic analysis of an Euclidean quantum field, in the above sense. In this introductory talk, I will put these ideas in context and illustrate various stochastic quantisation procedures and some of the rigorous results one can obtain from them.

Mon, 06 Feb 2023
16:30
L4

Singularities along the Lagrangian mean curvature flow of surfaces

Felix Schulze
(Warwick)
Abstract
It is an open question to determine which Hamiltonian isotopy classes of Lagrangians in a Calabi-Yau manifold have a special Lagrangian representative. One approach is to follow the steepest descent of area, i.e. the mean curvature flow, which preserves the Lagrangian condition. But in general such a flow will develop singularities in finite time, and it has been open how to continue the flow past singularities. We will give an introduction to the problem and explain recent advances where we show that in the simplest possible situation, i.e. the Lagrangian mean curvature flow of surfaces, when the singularity is the special Lagrangian union of two transverse planes, then the flow forms a “neck pinch”, and can be continued past the singularity. This is joint work with Jason Lotay and Gábor Székelyhidi.
Mon, 06 Feb 2023
16:00
L6

TBD

TBD
Mon, 06 Feb 2023
15:30
L4

The infinitesimal tangle hypothesis

Joost Nuiten (Toulouse)
Abstract

The tangle hypothesis is a variant of the cobordism hypothesis that considers cobordisms embedded in some finite-dimensional Euclidean space (together with framings). Such tangles of codimension d can be organized into an E_d-monoidal n-category, where n is the maximal dimension of the tangles. The tangle hypothesis then asserts that this category of tangles is the free E_d-monoidal n-category with duals generated by a single object.

In this talk, based on joint work in progress with Yonatan Harpaz, I will describe an infinitesimal version of the tangle hypothesis: Instead of showing that the E_d-monoidal category of tangles is freely generated by an object, we show that its cotangent complex is free of rank 1. This provides supporting evidence for the tangle hypothesis, but can also be used to reduce the tangle hypothesis to a statement at the level of E_d-monoidal (n+1, n)-categories by means of obstruction theory.

 

Mon, 06 Feb 2023

15:30 - 16:30
L1

Monte-Carlo simulations for wall-bounded incompressible viscous fluid flows

Zhongmin Qian
Abstract

In this talk I will present several new stochastic representations for
solutions of the Navier-Stokes equations in a wall-bounded region,
in the spirit of mean field theory. These new representations are
obtained by using the duality of conditional laws associated with the Taylor diffusion family.
By using these representation, Monte-Carlo simulations for boundary fluid flows, including
boundary turbulence, may be implemented. Numerical experiments are given to demonstrate the usefulness of this approach.

Mon, 06 Feb 2023
14:15
L4

Constant Scalar Curvature Metrics on Algebraic Manifolds

Sean Timothy Paul
(University of Wisconsin Madison)
Abstract

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle $L$ on a compact complex manifold $X$ should be equivalent to an algebro-geometric "stability condition" satisfied by the pair $(X,L)$. The cscK metrics are the critical points of Mabuchi's $K$-energy functional $M$, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff $M$ satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the $K$-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.

Mon, 06 Feb 2023

14:00 - 15:00
L6

Constrained and Multirate Training of Neural Networks

Tiffany Vlaar
(McGill University )
Abstract

I will describe algorithms for regularizing and training deep neural networks. Soft constraints, which add a penalty term to the loss, are typically used as a form ofexplicit regularization for neural network training. In this talk I describe a method for efficiently incorporating constraints into a stochastic gradient Langevin framework for the training of deep neural networks. In contrast to soft constraints, our constraints offer direct control of the parameter space, which allows us to study their effect on generalization. In the second part of the talk, I illustrate the presence of latent multiple time scales in deep learning applications.

Different features present in the data can be learned by training a neural network on different time scales simultaneously. By choosing appropriate partitionings of the network parameters into fast and slow parts I show that our multirate techniques can be used to train deep neural networks for transfer learning applications in vision and natural language processing in half the time, without reducing the generalization performance of the model.

Mon, 06 Feb 2023
13:00
L1

Distinguishing SCFTs in Four and Six Dimensions

Craig Lawrie
(DESY)
Abstract

When do two quantum field theories describe the same physics? I will discuss some approaches to this question in the context of superconformal field theories in four and six dimensions. First, I will discuss the construction of 6d (1,0) SCFTs from the perspective of the "atomic classification", focussing on an oft-overlooked subtlety whereby distinct SCFTs in fact share an effective description on the generic point of the tensor branch. We will see how to determine the difference in the Higgs branch operator spectrum from the atomic perspective, and how that agrees with a dual class S perspective. I will explain how other 4d N=2 SCFTs, which a priori look like distinct theories, can be shown to describe the same physics, as they arise as torus-compactifications of identical 6d theories.

Fri, 03 Feb 2023

15:30 - 16:30
Large Lecture Theatre, Department of Statistics, University of Oxford

Statistics' Florence Nightingale Lecture

Professor Marloes Matthuis
(ETH Zurich)
Further Information

Title: “Causal learning from observational data”

Please register in advance using the online form: https://www.stats.ox.ac.uk/events/florence-nightingale-lecture-2023

Marloes Henriette Maathuis is a Dutch statistician known for her work on causal inference using graphical models, particularly in high-dimensional data from applications in biology and epidemiology. She is a professor of statistics at ETH Zurich in Switzerland.

Abstract

I will discuss a line of work on estimating causal effects from observational data. In the first part of the talk, I will discuss identification and estimation of causal effects when the underlying causal graph is known, using adjustment. In the second part, I will discuss what one can do when the causal graph is unknown. Throughout, examples will be used to illustrate the concepts and no background in causality is assumed.

Fri, 03 Feb 2023

14:00 - 15:00
L3

Challenges in modeling the transmission dynamics of childhood diseases

Prof Felicia Magpantay
(Dept of Math and Stats Queen’s University Kingston)
Abstract

Mathematical models of childhood diseases are often fitted using deterministic methods under the assumption of homogeneous contact rates within populations. Such models can provide good agreement with data in the absence of significant changes in population demography or transmission, such as in the case of pre-vaccine era measles. However, accurate modeling and forecasting after the start of mass vaccination has proved more challenging. This is true even in the case of measles which has a well understood natural history and a very effective vaccine. We demonstrate how the dynamics of homogeneous and age-structured models can be similar in the absence of vaccination, but diverge after vaccine roll-out. We also present some fundamental differences in deterministic and stochastic methods to fit models to data, and propose techniques to fit long term time series with imperfect covariate information. The methods we develop can be applied to many types of complex systems beyond those in disease ecology.
 

Fri, 03 Feb 2023

12:00 - 13:00
N3.12

Geometric Incarnations of (Shifted) Quantum Loop Algebras

Henry Liu
(University of Oxford)
Abstract

I'll briefly explain quantum groups and $R$-matrices and why they're the same thing. Then we'll see how to construct various $R$-matrices from Nakajima quiver varieties and some possible applications.