Courant-sharp eigenvalues of the Laplacian on Euclidean domains
Abstract
Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded, connected, open set with Lipschitz boundary.
Let $u$ be an eigenfunction of the Laplacian on $\Omega$ with either a Dirichlet, Neumann or Robin boundary condition.
If an eigenfunction $u$ associated with the $k$--th eigenvalue has exactly $k$ nodal domains, then we call it a Courant-sharp eigenfunction. In this case, we call the corresponding eigenvalue a Courant-sharp eigenvalue.
We first discuss some known results for the Courant-sharp Dirichlet and Neumann eigenvalues of the Laplacian on Euclidean domains.
We then discuss whether the Robin eigenvalues of the Laplacian on the square are Courant-sharp.
This is based on joint work with B. Helffer (Université de Nantes).
11:30
Partial associativity and rough approximate groups
Abstract
Given a finite set X, is an easy exercise to show that a binary operation * from XxX to X which is injective in each variable separately, and which is also associative, makes (X,*) into a group. Hrushovski and others have asked what happens if * is only partially associative - do we still get something resembling a group? The answer is known to be yes (in a strong sense) if almost all triples satisfy the associative law. In joint work with Tim Gowers, we consider the so-called `1%' regime, in which we only have an epsilon fraction of triples satisfying the associative law. In this regime, the answer turns out to be rather more subtle, involving certain group-like structures which we call rough approximate groups. I will discuss these objects, and try to give a sense of how they arise, by describing a somewhat combinatorial interpretation of partial associativity.
16:00
Subgroups of direct products of right-angled Artin groups.
Abstract
Right-angled Artin groups (RAAGs) were first introduced in the 70s by Baudisch and further developed in the 80s by Droms.
They have attracted much attention in Geometric Group Theory. One of the many reasons is that it has been shown that all hyperbolic 3-manifold groups are virtually finitely presented subgroups of RAAGs.
In the first part of the talk, I will discuss some of their interesting properties. I will explain some of their relations with manifold groups and their importance in finiteness conditions for groups.
In the second part, I will focus on my PhD project concerning subgroups of direct products of RAAGs.
14:00
Introduction to Social Choice Theory
Abstract
Do you feel unable to explain why maths are cool? Are you looking for fun and affordable theorems for your non-mathematician friends? This is your topic.
This talk aims to be a rigorous introduction to Social Choice Theory, a sub-branch of Game Theory with natural applications to economics, sociology and politics that tries to understand how to determine, based on the personal opinions of all individuals, the collective opinion of society. The goal is to prove the three famous and pessimistic impossibility theorems: Arrow's theorem, Gibbard's theorem and Balinski-Young's theorem. Our blunt conclusion will be that, unfortunately, there are no ideally fair social choice systems. Is there any hope yet?
16:00
Lipschitz spaces from the semigroup language point of view
Abstract
Lipschitz (or H\"older) spaces $C^\delta, \, k< \delta <k+1$, $k\in\mathbb{N}_0$, are the set of functions that are more regular than the $\mathcal{C}^k$ functions and less regular than the $\mathcal{C}^{k+1}$ functions. The classical definitions of H\"older classes involve pointwise conditions for the functions and their derivatives. This implies that to prove regularity results for an operator among these spaces we need its pointwise expression. In many cases this can be a rather involved formula, see for example the expression of $(-\Delta)^\sigma$ in (Stinga, Torrea, Regularity Theory for the fractional harmonic oscilator, J. Funct. Anal., 2011.)
In the 60's of last century, Stein and Taibleson, characterized bounded H\"older functions via some integral estimates of the Poisson semigroup, $e^{-y\sqrt{-\Delta}},$ and of the Gauss semigroup, $e^{\tau{\Delta}}$. These kind of semigroup descriptions allow to obtain regularity results for fractional operators in these spaces in a more direct way.
In this talk we shall see that we can characterize H\"older spaces adapted to other differential operators $\mathcal{L}$ by means of semigroups and that these characterizations will allow us to prove the boundedness of some fractional operators, such as $\mathcal{L}^{\pm \beta}$, Riesz transforms or Bessel potentials, avoiding the long, tedious and cumbersome computations that are needed when the pointwise expressions are handled.
Genus one mirror symmetry
Abstract
Mirror symmetry, in a crude formulation, is usually presented as a correspondence between curve counting on a Calabi-Yau variety X, and some invariants extracted from a mirror family of Calabi-Yau varieties. After the physicists Bershadsky-Cecotti-Ooguri-Vafa (henceforth BCOV), this is organised according to the genus of the curves in X we wish to enumerate, and gives rise to an infinite recurrence of differential equations. In this talk, I will give a general introduction to these problems, and present a rigorous mathematical formulation of the BCOV conjecture at genus one, in terms of a lifting of the Grothendieck-Riemann-Roch. I will explain the main ideas of the proof of the conjecture for Calabi-Yau hypersurfaces in projective space, based on the Riemann-Roch theorem in Arakelov geometry. Our results generalise from dimension 3 to arbitrary dimensions previous work of Fang-Lu-Yoshikawa.
This is joint work with G. Freixas and C. Mourougane.
14:30
Lightning Laplace and Stokes solvers
Abstract
We extend the lightning Laplace solver (Gopal and Trefethen, SINUM 2019) to unbounded domains and to the biharmonic equation. Illustrating the high accuracy of such methods, we get beautiful contour plots of Moffatt eddies.
14:15
Tensor-triangular fields
Abstract
I'll give a general introduction to tensor-triangular geometry, the algebraic study of tensor-triangulated categories as they appear in topology, geometry and representation theory. Then I'll discuss an elementary idea, that of a "field" in this theory, and explain what we currently know about them.
14:00
An asymptotic version of the prime power conjecture
Abstract
A subset $D$ of a finite cyclic group $\mathbb{Z}/m\mathbb{Z}$ is called a "perfect difference set" if every nonzero element of $\mathbb{Z}/m\mathbb{Z}$ can be written uniquely as the difference of two elements of $D$. If such a set exists, then a simple counting argument shows that $m=n^2+n+1$ for some nonnegative integer $n$. Singer constructed examples of perfect difference sets in $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ whenever $n$ is a prime power, and it is an old conjecture that these are the only such $n$ for which $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ contains a perfect difference set. In this talk, I will discuss a proof of an asymptotic version of this conjecture.
14:00
Matrix Factorization with Expander Graphs
Abstract
Many computational techniques in data science involve the factorization of a data matrix into the product of two or more structured matrices. Examples include PCA, which relies on computing an SVD, recommendation systems, which leverage non-negative matrix factorization, infilling missing entries with low rank matrix completion, and finding sparse representations via dictionary learning. In our work we study a new matrix factorization problem, involving the recovery of $\textbf{A}$ and $\textbf{X}$ from $\textbf{Y} := \textbf{A}\textbf{X}$ under the following assumptions; $\textbf{A}$ is an $m \times n$ sparse binary matrix with a fixed number $d$ of nonzeros per column and $\textbf{X}$ is an $n \times N$ sparse real matrix whose columns have $k$ nonzeros and are dissociated. This setup is inspired and motivated by similar models studied in the dictionary learning literature as well as potential connections both with stochastic block models and combinatorial compressed sensing. In this talk we present a new algorithm, EBR, for solving this problem, as well as recovery guarantees in the context of a particular probabilistic data model. Using the properties of expander graphs we are able to show, under certain assumptions, that with just $N = \textit{O}( \log^2(n))$ samples then EBR recovers the factorization up to permutation with high probability.
Adaptive biological networks
Abstract
Can spatial fungal networks be informative for both ecology and network science?
Filamentous organisms grow as adaptive biological spatial networks. These networks are in a continuous balance of two main forces: exploration of the habitat to acquire scarce resources, and the transport of those resources within the developing network. In addition, the construction of the network has to be kept a low cost while taking into account the risk of damage by predation. Such network optimization is not unique to biological systems, but is relevant to transport networks across many domains. Thus, this collaborative project between FU-Berlin and University of Oxford represents the beginning of a research program that aims at: First, setting up protocols for the use of network analysis to characterize spatial networks formed by both macroscopic and microscopic filamentous organisms (e.g. Fungi), and determining the fitness and ecological consequences of different structure of the networks. Second, extracting biologically-inspired algorithms that lead to optimized network formation in fungi and discuss their utility in other network domains. This information is critical to demonstrate that we have a viable and scalable pipeline for the measurement of such properties as well provide preliminary evidence of the usefulness of studying network properties of fungi.
Towards integrability of a quartic analogue of the Kontsevich model
Abstract
We consider an analogue of Kontsevich's matrix Airy function where the cubic potential $\mathrm{Tr}(\Phi^3)$ is replaced by a quartic term $\mathrm{Tr}(\Phi^4)$. By methods from quantum field theory we show that also the quartic case is exactly solvable. All cumulants can be expressed as composition of elementary functions with the inverse of another elementary function. For infinite matrices the inversion gives rise to hyperlogarithms and zeta values as familiar from quantum field theory. For finite matrices the elementary functions are rational and should be viewed as branched covers of Riemann surfaces, in striking analogy with the topological recursion of the Kontsevich model. This rationality is strong support for the conjecture that the quartic analogue of the Kontsevich model is integrable.
A Recipe for Reciprocity
Abstract
Gauss noted quadratic reciprocity to be among his favourite results, and any undergrad will quickly pick up on just how strange it is despite a plethora of elementary proofs. By 1930, E. Artin had finalized Artin reciprocity which wondrously subsumed all previous generalizations, but was still confined to abelian contexts. An amicable non-abelian reciprocity remains a driving force in number-theoretic research.
In this talk, I'll recount Artin reciprocity and show it implies quadratic and cubic reciprocity. I'll then talk about some candidate non-abelian reciprocities, and in particular, which morals of Artin reciprocity they preserve.
16:00
Regularity and rigidity results for nonlocal minimal graphs
Abstract
Nonlocal minimal surfaces are hypersurfaces of Euclidean space that minimize the fractional perimeter, a geometric functional introduced in 2010 by Caffarelli, Roquejoffre, and Savin in connection with phase transition problems displaying long-range interactions.
In this talk, I will introduce these objects, describe the most important progresses made so far in their analysis, and discuss the most challenging open questions.
I will then focus on the particular case of nonlocal minimal graphs and present some recent results obtained on their regularity and classification in collaboration with X. Cabre, A. Farina, and L. Lombardini.
15:45
The complexity of knot genus problem in 3-manifolds
Abstract
The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.
Rough semimartingales
Abstract
I will talk about optimal estimates for stochastic integrals
in the case when both rough paths and martingales play a role.
This is an ongoing joint work with Peter Friz (TU Berlin).
Singular time changes, distributional valued Ricci bounds, and gradient estimates for reflected Brownian motion on non-convex domains
Abstract
We derive generalized lower Ricci bounds in terms of signed measures. And we prove associated gradient estimates for the heat flow with Neumann boundary conditions on domains of metric measure spaces obtained through „convexification“ of the domains by means of subtle time changes. This improves upon previous results both in the case of non-convex domains and in the case of convex domains.
Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds
Abstract
We show that homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, using that they admit periodic, integrally minimal foliations by homogeneous hypersurfaces. For the geometric flow induced by the orbit-Einstein condition, we construct a Lyapunov function based on curvature estimates which come from real GIT.
12:45
IIB flux non-commutativity and the global structure of field theories
Abstract
I will discuss the origin of the choice of global structure
--- or equivalently, the choice for which higher p-form symmetries are
present in the theory --- for various (Lagrangian and non-Lagrangian)
field theories in terms of their realization in IIB and M-theory. I
will explain how this choice on the field theory side can be traced
back to the fact that fluxes in string/M-theory do not commute in the
presence of torsion. I will illustrate how these ideas provide a
stringy explanation for the fact that six-dimensional (2,0) and (1,0)
theories generically have a partition vector (as opposed to a partition
function) and explain how this reproduces the classification of N=4
theories provided by Aharony, Seiberg and Tachikawa. Time permitting, I
will also explain how to use these ideas to obtain the algebra of
higher p-form symmetries for 5d SCFTs arising from M-theory at
arbitrary isolated toric singularities, and to classify global forms
for various 4d theories in the presence of duality defects.
Applying a mathematician's mindset beyond mathematics
Abstract
Mathematics has provided us with several extremely useful tools to apply in the world beyond mathematics. But it also provides us with mathematicians -- individuals who have trained habits of careful thinking in domains where that is the only way to make progress. This talk will explore some other domains -- such as saying sensible things about the long-term future, or how to identify good actions in the world -- where this style of thinking seems particularly desirable as progress can otherwise be elusive or illusory. It will also consider how a mathematician's curiosity can help to identify important questions.
PLEASE NOTE THAT THE SEMINAR IS CANCELLED DUE TO UNFORESEEN CIRCUMSTANCES
Numerical simulations of immersed granular collapses with dense and loose initial packings
Abstract
The collapse of granular columns in a viscous fluid is a common model case for submarine geophysical flows. In immersed granular collapses, dense packings result in slow dynamics and short runout distances, while loose packings are associated with fast dynamics and long runout distances. However, the underlying mechanisms of the triggering and runout, particularly regarding the complex fluid-particle interactions at the pore-scale, are yet to be fully understood. In this study, a three-dimensional approach coupling the Lattice Boltzmann Method and the Discrete Element Method is adopted to investigate the influence of packing density on the collapsing dynamics. The direct numerical simulation of fluid-particle interactions provides evidence of the pore pressure feedback mechanism. In dense cases, a strong arborescent contact force network can form to prevent particles from sliding, resulting in a creeping failure behavior. In contrast, the granular phase is liquefied substantially in loose cases, leading to a rapid and catastrophic failure. Furthermore, hydroplaning can take place in loose cases due to the fast-moving surge front, which reduces the frictional resistance dramatically and thereby results in a longer runout distance. More quantitatively, we are able to linearly correlate the normalized runout distance and the densimetric Froude number across a wide range of length scales, including small-scale numerical/experimental data and large-scale field data.
Geometric methods on low-rank matrix and tensor manifolds
Abstract
I will present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors. Based on joint work with André Uschmajew (MPI MiS Leipzig).
Fast algorithms for a large-scale multi-agent Travelling Salesman Problem
Abstract
Background: The traditional business models for B2B freight and distribution are struggling with underutilised transport capacities resulting in higher costs, excessive environmental damage and unnecessary congestion. The scale of the problem is captured by the European Environmental Agency: only 63% of journeys carry useful load and the average vehicle utilisation is under 60% (by weight or volume). Decarbonisation of vehicles would address only part of the problem. That is why leading sector researchers estimate that freight collaboration (co-shipment) will deliver a step change improvement in vehicle fill and thus remove unproductive journeys delivering over 20% of cost savings and >25% reduction in environmental footprint. However, these benefits can only be achieved at a scale that involves 100’s of players collaborating at a national or pan-regional level. Such scale and level of complexity creates a massive optimisation challenge that current market solutions are unable to handle (modern route planning solutions optimise deliveries only within the “4 walls” of a single business).
Maths challenge: The mentioned above optimisation challenge could be expressed as an extended version of the TSP, but with multiple optimisation objectives (other than distance). Moreover, besides the scale and multi-agent setup (many shippers, carriers and recipients engaged simultaneously) the model would have to operate a number of variables and constraints, which in addition to the obvious ones also include: time (despatch/delivery dates/slots and journey durations), volume (items to be delivered), transport equipment with respective rate-cards from different carriers, et al. With the possible variability of despatch locations (when clients have multi-warehouse setup) this potentially creates a very-large non-convex optimisation problem that would require development of new, much faster algorithms and approaches. Such algorithm should be capable of finding “local” optimums and subsequently improve them within a very short window i.e. in minutes, which would be required to drive and manage effective inter-company collaboration across many parties involved. We tried a few different approaches eg used Gurobi solver, which even with clustering was still too slow and lacked scalability, only to realise that we need to build such an algorithm in-house.
Ask: We started to investigate other approaches like Simulated Annealing or Gravitational Emulation Local Search but this work is preliminary and new and better ideas are of interest. So in support of our Technical Feasibility study we are looking for support in identification of the best approach and design of the actual algorithm that we’ll use in the development of our Proof of Concept.
Oxford Mathematics Public Lecture: Henry Segerman - Artistic Mathematics: truth and beauty
This lecture is about mathematical visualization: how to make accurate, effective, and beautiful pictures, models, and experiences of mathematical concepts. What is it that makes a visualization compelling?
Henry will show examples in the medium of 3D printing, as well as his work in virtual reality and spherical video. He will also discuss his experiences in teaching a project-based class on 3D printing for mathematics students.
Henry Segerman is an Associate Professor in the Department of Mathematics at Oklahoma State University.
Please email @email to register.
Watch live:
https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Segerman
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
16:00
The p-part of BSD for residually reducible elliptic curves of rank one
Abstract
Let E be an elliptic curve over the rationals and p a prime such that E admits a rational p-isogeny satisfying some assumptions. In a joint work with J. Lee and C. Skinner, we prove the anticyclotomic Iwasawa main conjecture for E/K for some suitable quadratic imaginary field K. I will explain our strategy and how this, combined with complex and p-adic Gross-Zagier formulae, allows us to prove that if E has rank one, then the p-part of the Birch and Swinnerton-Dyer formula for E/Q holds true.
Feedback control of falling liquid films
Abstract
The flow of a thin film down an inclined plane is an important physical phenomenon appearing in many industrial applications, such as coating (where it is desirable to maintain the fluid interface flat) or heat transfer (where a larger interfacial area is beneficial). These applications lead to the need of reliably manipulating the flow in order to obtain a desired interfacial shape. The interface of such thin films can be described by a number of models, each of them exhibiting instabilities for certain parameter regimes. In this talk, I will propose a feedback control methodology based on same-fluid blowing and suction. I use the Kuramoto–Sivashinsky (KS) equation to model interface perturbations and to derive the controls. I will show that one can use a finite number of point-actuated controls based on observations of the interface to stabilise both the flat solution and any chosen nontrivial solution of the KS equation. Furthermore, I will investigate the robustness of the designed controls to uncertain observations and parameter values, and study the effect of the controls across a hierarchy of models for the interface, which include the KS equation, (nonlinear) long-wave models and the full Navier–Stokes equations.
Collateralized Networks
Abstract
This paper studies the spread of losses and defaults in financial networks with two important features: collateral requirements and alternative contract termination rules in bankruptcy. When collateral is committed to a firm’s counterparties, a solvent firm may default if it lacks sufficient liquid assets to meet its payment obligations. Collateral requirements can thus increase defaults and payment shortfalls. Moreover, one firm may benefit from the failure of another if the failure frees collateral committed by the surviving firm, giving it additional resources to make other payments. Contract termination at default may also improve the ability of other firms to meet their obligations. As a consequence of these features, the timing of payments and collateral liquidation must be carefully specified, and establishing the existence of payments that clear the network becomes more complex. Using this framework, we study the consequences of illiquid collateral for the spread of losses through fire sales; we compare networks with and without selective contract termination; and we analyze the impact of alternative bankruptcy stay rules that limit the seizure of collateral at default. Under an upper bound on derivatives leverage, full termination reduces payment shortfalls compared with selective termination.
Using shared and distributed memory in the solution of large sparse systems
Abstract
We discuss the design of algorithms and codes for the solution of large sparse systems of linear equations on extreme scale computers that are characterized by having many nodes with multi-core CPUs or GPUs. We first use two approaches to get good single node performance. For symmetric systems we use task-based algorithms based on an assembly tree representation of the factorization. We then use runtime systems for scheduling the computation on both multicore CPU nodes and GPU nodes [6]. In this work, we are also concerned with the efficient parallel implementation of the solve phase using the computed sparse factors, and we show impressive results relative to other state-of-the-art codes [3]. Our second approach was to design a new parallel threshold Markowitz algorithm [4] based on Luby’s method [7] for obtaining a maximal independent set in an undirected graph. This is a significant extension since our graph model is a directed graph. We then extend the scope of both these approaches to exploit distributed memory parallelism. In the first case, we base our work on the block Cimmino algorithm [1] using the ABCD software package coded by Zenadi in Toulouse [5, 8]. The kernel for this algorithm is the direct factorization of a symmetric indefinite submatrix for which we use the above symmetric code. To extend the unsymmetric code to distributed memory, we use the Zoltan code from Sandia [2] to partition the matrix to singly bordered block diagonal form and then use the above unsymmetric code on the blocks on the diagonal. In both cases, we illustrate the added parallelism obtained from combining the distributed memory parallelism with the high single-node performance and show that our codes out-perform other state-of-the-art codes. This work is joint with a number of people. We developed the algorithms and codes in an EU Horizon 2020 Project, called NLAFET, that finished on 30 April 2019. Coworkers in this were: Sebastien Cayrols, Jonathan Hogg, Florent Lopez, and Stojce ´ ∗@email 1 Nakov. Collaborators in the block Cimmino part of the project were: Philippe Leleux, Daniel Ruiz, and Sukru Torun. Our codes available on the github repository https://github.com/NLAFET.
References [1] M. ARIOLI, I. S. DUFF, J. NOAILLES, AND D. RUIZ, A block projection method for sparse matrices, SIAM J. Scientific and Statistical Computing, 13 (1992), pp. 47–70. [2] E. BOMAN, K. DEVINE, L. A. FISK, R. HEAPHY, B. HENDRICKSON, C. VAUGHAN, U. CATALYUREK, D. BOZDAG, W. MITCHELL, AND J. TERESCO, Zoltan 3.0: Parallel Partitioning, Load-balancing, and Data Management Services; User’s Guide, Sandia National Laboratories, Albuquerque, NM, 2007. Tech. Report SAND2007-4748W http://www.cs.sandia. gov/Zoltan/ug_html/ug.html. [3] S. CAYROLS, I. S. DUFF, AND F. LOPEZ, Parallelization of the solve phase in a task-based Cholesky solver using a sequential task flow model, Int. J. of High Performance Computing Applications, To appear (2019). NLAFET Working Note 20. RAL-TR-2018-008. [4] T. A. DAVIS, I. S. DUFF, AND S. NAKOV, Design and implementation of a parallel Markowitz threshold algorithm, Technical Report RAL-TR-2019-003, Rutherford Appleton Laboratory, Oxfordshire, England, 2019. NLAFET Working Note 22. Submitted to SIMAX. [5] I. S. DUFF, R. GUIVARCH, D. RUIZ, AND M. ZENADI, The augmented block Cimmino distributed method, SIAM J. Scientific Computing, 37 (2015), pp. A1248–A1269. [6] I. S. DUFF, J. HOGG, AND F. LOPEZ, A new sparse symmetric indefinite solver using a posteriori threshold pivoting, SIAM J. Scientific Computing, To appear (2019). NLAFET Working Note 21. RAL-TR-2018-012. [7] M. LUBY, A simple parallel algorithm for the maximal independent set problem, SIAM J. Computing, 15 (1986), pp. 1036–1053. [8] M. ZENADI, The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method., These de Doctorat, ´ Institut National Polytechnique de Toulouse, Toulouse, France, decembre 2013.
How to use maths to solve philosophy, human value, AI, and save the world
Abstract
How would we get a powerful AI to align itself with human preferences? What are human preferences anyway? And how can you code all this?
It turns out that maths give you the grounding to answer these fascinating and vital questions.
12:00
Asymptotic stability of peaked travelling waves for Camassa-Holm type equations.
Abstract
The Camassa-Holm (CH) equation is a nonlinear nonlocal dispersive equation which arises as a model for the propagation of unidirectional shallow water waves over a flat bottom. One of the most important features of the CH equation is the existence of peaked travelling waves, also called peakons. The aim of this talk is to review some asymptotic stability result for peakon solutions for CH-type equations as well as to present some new result for higher-order generalization of the CH equation.
16:00
Aut(T) has trivial outer automorphism group
Abstract
The automorphism group of a d-regular tree is a topological group with many interesting features. A nice thing about this group is that while some of its features are highly non-trivial (e.g., the existence of infinitely many pairwise non-conjugate simple subgroups), often the ideas involved in the proofs are fairly intuitive and geometric.
I will present a proof for the fact that the outer automorphism group of (Aut(T)) is trivial. This is original joint work with Gil Goffer, but as is often the case in this area, was already proven by Bass-Lubotzky 20 years ago. I will mainly use this talk to hint at how algebra, topology and geometry all play a role when working with Aut(T).
02:00
Introduction to scrolls
Abstract
Scrolls play a central role in the construction of varieties; they are ambient spaces for K3 surfaces and Fano 3-folds. In this talk, I will say in two ways what scrolls are and give examples of some embedded varieties in them.
A Fourier-analytic approach to the transport AKT theorem.
Abstract
We will be discussing a Fourier-analytic approach
to optimal matching between independent samples, with
an elementary proof of the Ajtai-Komlos-Tusnady theorem.
The talk is based on a joint work with Michel Ledoux.
A Pfaffian - determinantal duality in random matrices and last passage percolation
Abstract
It is known that random matrix distributions such as those that describe the largest eignevalue of the Gaussian Orthogonal and Symplectic ensembles (GOE, GSE) admit two types of representations: one in terms of a Fredholm Pfaffian and one in terms of a Fredholm determinant. The equality of the two sets of expressions has so far been established via involved computations of linear algebraic nature. We provide a structural explanation of this duality via links (old and new) between the model of last passage percolation and the irreducible characters of classical groups, in particular the general linear, symplectic and orthogonal groups, and by studying, combinatorially, how their representations decompose when restricted to certain subgroups. Based on joint work with Elia Bisi.
Donaldson-Thomas theory and tautological bundles on Hilbert schemes of points on surfaces
Abstract
Tautological bundles on Hilbert schemes of points often enter into enumerative and physical computations. I will explain how to use the Donaldson-Thomas theory of toric threefolds to produce combinatorial identities that are expressed geometrically using tautological bundles on the Hilbert scheme of points on a surface. I'll also explain how these identities can be used to study Euler characteristics of tautological bundles over Hilbert schemes of points on general surfaces.
14:30
Dimensionality reduction techniques for global optimization
Abstract
We show that the scalability challenges of Global Optimisation algorithms can be overcome for functions with low effective dimensionality, which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations. We propose the use of random subspace embeddings within a(ny) global minimisation algorithm, extending the approach in Wang et al. (2016). Using tools from random matrix theory and conic integral geometry, we investigate the efficacy and convergence of our random subspace embeddings approach, in a static and/or adaptive formulation. We illustrate our algorithmic proposals and theoretical findings numerically, using state of the art global solvers. This work is joint with Coralia Cartis.
Soficity and variations on Higman's group.
A group is sofic when every finite subset can be well approximated in a finite symmetric group. The outstanding question, due to Gromov, is whether every group is sofic.
Helfgott and Juschenko argued that a celebrated group constructed by Higman is unlikely to be sofic because its soficity would imply the existence of some seemingly pathological functions. I will describe joint work with Martin Kassabov and Vivian Kuperberg in which we construct variations on Higman's group and explore their soficity.
14:00
Edge-sampling and modularity
Abstract
Modularity is a function on graphs which is used in algorithms for community detection. For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in $G$. The (max) modularity $q^\ast(G)$ of the graph $G$ is defined to be the maximum over all vertex partitions of the modularity score, and satisfies $0 \leq q^\ast(G) \leq 1$.
We analyse when community structure of an underlying graph can be determined from an observed subset of the graph. In a natural model where we suppose edges in an underlying graph $G$ appear with some probability in our observed graph $G'$ we describe how high a sampling probability we need to infer the community structure of the underlying graph.
Joint work with Colin McDiarmid.
14:00
Stable Computation of Generalized Polar Decompositions
Abstract
The QDWH algorithm can compute the polar decomposition of a matrix in a stable and efficient way. We generalize this method in order to compute generalized polar decompositions with respect to signature matrices. Here, the role of the QR decomposition is played by the hyperbolic QR decomposition. However, it doesn't show the same favorable properties concerning stability as its orthogonal counterpart. Remedies are found by exploiting connections to the LDL^T factorization and by employing well-conditioned permuted graph bases. The computed polar decomposition is used to formulate a structure-preserving spectral divide-and-conquer method for pseudosymmetric matrices. Applications of this method are found in computational quantum physics, where eigenvalues and eigenvectors describe optical properties of condensed matter or molecules. Additional properties guarantee fast convergence and a reduction to symmetric definite eigenvalue problems after just one step of spectral divide-and-conquer.
The combined modelling of tumour growth and its environment
Abstract
Numerous mathematical models have been proposed for modelling cancerous tumour invasion (Gatenby and Gawlinski 1996), angiogenesis (Owen et al 2008), growth kinetics (Wang et al 2009), response to irradiation (Gao et al 2013) and metastasis (Qiam and Akcay 2018). In this study, we attempt to model the qualitative behavior of growth, invasion, angiogenesis and fragmentation of tumours at the tissue level in an explicitly spatial and continuous manner in two dimensions. We simulate the effectiveness of radiation therapy on a growing tumour in comparison with immunotherapy and propose a novel framework based on vector fields for modelling the impact of interstitial flow on tumour morphology. The results of this model demonstrate the effectiveness of employing a system of partial differential equations along with vector fields for simulating tumour fragmentation and that immunotherapy, when applicable, is substantially more effective than radiation therapy.
12:00
The polynomial scattering equations on and off shell
Abstract
A polynomial form is established for the off-shell CHY scattering equations proposed by Lam and Yao. Re-expressing this in terms of independent Mandelstam invariants provides a new expression for the polynomial scattering equations, immediately valid off shell, which makes it evident that they yield the off-shell amplitudes given by massless ϕ3 Feynman graphs. A CHY expression for individual Feynman graphs, valid even off shell, is established through a recurrence relation.
On Compression Limits for Random Geometric Graphs
Abstract
It is known that many real-world networks exhibit geometric properties. Brain networks, social networks, and wireless communication networks are a few examples. Storage and transmission of the information contained in the topologies and structures of these networks are important tasks, which, given their scale, is often nontrivial. Although some (but not much) work has been done to characterize and develop compression limits and algorithms for nonspatial graphs, little is known for the spatial case. In this talk, we will discuss an information theoretic formalism for studying compression limits for a fairly broad class of random geometric graphs. We will then discuss entropy bounds for these graphs and, time permitting, local (pairwise) connection rules that yield maximum entropy properties in the induced graph distribution.
The Class Field Tower Problem
Abstract
Given a number field K, it is natural to ask whether it has a finite extension with ideal class number one. This question can be translated into a fundamental question in class field theory, namely the class field tower problem. In this talk, we are going to discuss this problem as well as its solution due to Golod and Shafarevich using methods of group cohomology.
Steklov eigenvalue problem on orbisurfaces
Abstract
The Steklov eigenvalue problem is an eigenvalue problem whose spectral parameters appear in the boundary condition. On a Riemannian surface with smooth boundary, Steklov eigenvalues have a very sharp asymptotic expansion. Also, a number of interesting sharp bounds for the $k$th Steklov eigenvalues have been known. We extend these results on orbisurfaces and discuss how the structure of orbifold singularities comes into play. This is joint work with Arias-Marco, Dryden, Gordon, Ray and Stanhope.
15:45
Commensurable coHopficity and hyperbolic groups
Abstract
A broad challenge in the theory of finitely generated groups is to understand their subgroups. A group is commensurably coHopfian if its finite index subgroups are distinct from its infinite index subgroups (that is to say not abstractly isomorphic). We will focus primarily on hyperbolic groups, and give the first examples of one-ended hyperbolic groups that are not commensurably coHopfian.
This is joint work with Emily Stark.