Past Industrial and Applied Mathematics Seminar

29 October 2020
16:00
Andrea Bertozzi

Further Information: 

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

We revisit the tears of wine problem for thin films in
water-ethanol mixtures and present a new model for the climbing
dynamics. The new formulation includes a Marangoni stress balanced by
both the normal and tangential components of gravity as well as surface
tension which lead to distinctly different behavior. The combined
physics can be modeled mathematically by a scalar conservation law with
a nonconvex flux and a fourth order regularization due to the bulk
surface tension. Without the fourth order term, shock solutions must
satisfy an entropy condition - in which characteristics impinge on the
shock from both sides. However, in the case of a nonconvex flux, the
fourth order term is a singular perturbation that allows for the
possibility of undercompressive shocks in which characteristics travel
through the shock. We present computational and experimental evidence
that such shocks can happen in the tears of wine problem, with a
protocol for how to observe this in a real life setting.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Industrial and Applied Mathematics Seminar
22 October 2020
16:00
Howard Stone

Further Information: 

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

 

Abstract

There are many examples of thin-film flows in fluid dynamics, and in many cases similarity solutions are possible. In the typical, well-known case the thin-film shape is described by a nonlinear partial differential equation in two independent variables (say x and t), which upon recognition of a similarity variable, reduces the problem to a nonlinear ODE. In this talk I describe work we have done on 1) Marangoni-driven spreading on pre-wetted films, where the thickness of the pre-wetted film affects the dynamics, and 2) the drainage of a film on a vertical substrate of finite width. In the latter case we find experimentally a structure to the film shape near the edge, which is a function of time and two space variables. Analysis of the corresponding thin-film equation shows that there is a similarity solution, collapsing three independent variables to one similarity variable, so that the PDE becomes an ODE. The solution is in excellent agreement with the experimental measurements.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Industrial and Applied Mathematics Seminar
15 October 2020
16:00
Pierre Haas
Abstract

Tissue folding during animal development involves an intricate interplay
of cell shape changes, cell division, cell migration, cell
intercalation, and cell differentiation that obfuscates the underlying
mechanical principles. However, a simpler instance of tissue folding
arises in the green alga Volvox: its spherical embryos turn themselves
inside out at the close of their development. This inversion arises from
cell shape changes only.

In this talk, I will present a model of tissue folding in which these
cell shape changes appear as variations of the intrinsic stretches and
curvatures of an elastic shell. I will show how this model reproduces
Volvox inversion quantitatively, explains mechanically the arrest of
inversion observed in mutants, and reveals the spatio-temporal
regulation of different biological driving processes. I will close with
two examples illustrating the challenges of nonlinearity in tissue
folding: (i) constitutive nonlinearity leading to nonlocal elasticity in
the continuum limit of discrete cell sheet models; (ii) geometric
nonlinearity in large bending deformations of morphoelastic shells.
 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Industrial and Applied Mathematics Seminar
18 June 2020
16:00
Professor Dominic Vella

Further Information: 

This term's IAM seminar, a bi-weekly series entitled, 'OCIAM learns about ...' will involve internal speakers giving a general introduction to a topic on which they are experts.

Join the seminar in Zoom

[Meeting URL removed for security reasons]
 Meeting ID: 917 3329 6449Password: 329856One 

Abstract


This week Professor Dominic Vella will talk about wrinkling  

In this talk I will provide an overview of recent work on the wrinkling of thin elastic objects. In particular, the focus of the talk will be on answering questions that arise in recent applications that seek not to avoid, but rather, exploit wrinkling. Such applications usually take place far beyond the threshold of instability and so key themes will be the limitations of “standard” instability analysis, as well as what analysis should be performed instead. I will discuss the essential ingredients of this ‘Far-from-Threshold’ analysis, as well as outlining some open questions.  

  • Industrial and Applied Mathematics Seminar
4 June 2020
16:00
Professor Ian Hewitt

Further Information: 

A new bi-weekly seminar series, 'OCIAM learns ..."

Internal speakers give a general introduction to a topic on which they are experts.

Abstract

Abstract

This talk will provide an overview of mathematical modelling applied to the behaviour of ice sheets and their role in the climate system.  I’ll provide some motivation and background, describe simple approaches to modelling the evolution of the ice sheets as a fluid-flow problem, and discuss some particular aspects of the problem that are active areas of current research.  The talk will involve a variety of interesting continuum-mechanical models and approximations that have analogues in other areas of applied mathematics.


You can join the meeting by clicking on the link below.
Join Zoom Meeting
https://zoom.us/j/91733296449?pwd=c29vMDluR0RCRHJia2JEcW1LUVZjUT09
Meeting ID: 917 3329 6449
Password: 329856

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Industrial and Applied Mathematics Seminar
28 May 2020
16:00
Professor Renaud Lambiotte

Further Information: 

A new bi-weekly seminar series, 'OCIAM learns...."

Internal speakers give a general introduction to a topic on which they are experts.

Abstract

The many facets of community detection on networks 

Community detection, the decomposition of a graph into essential building blocks, has been a core research topic in network science over the past years. Since a precise notion of what consti- tutes a community has remained evasive, community detection algorithms have often been com- pared on benchmark graphs with a particular form of assortative community structure and classified based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different goals and rea- sons for why we want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different facets of community detection also delineates the many lines of research and points out open directions and avenues for future research.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Industrial and Applied Mathematics Seminar
12 March 2020
16:00
to
17:30
Professor Alain Goriely
Abstract

Neurodegenerative diseases such as Alzheimer’s or Parkinson’s are devastating conditions with poorly understood mechanisms and no known cure. Yet a striking feature of these conditions is the characteristic pattern of invasion throughout the brain, leading to well-codified disease stages visible to neuropathology and associated with various cognitive deficits and pathologies. In this talk, I will show that by linking new mathematical theories to recent progress in imaging, we can unravel some of the universal features associated with dementia and, more generally, brain functions. In particular, I will outline interesting mathematical problems and ideas that naturally appear in the process.

  • Industrial and Applied Mathematics Seminar
5 March 2020
16:00
to
17:30
Jessica Williams and Andrew Krause
Abstract


Heterogeneity in Space and Time: Novel Dispersion Relations in Morphogenesis

Dr. Andrew Krause

Motivated by recent work with biologists, I will showcase some results on Turing instabilities in complex domains. This is scientifically related to understanding developmental tuning in the whiskers of mice, and in synthetic quorum-sensing patterning of bacteria. Such phenomena are typically modelled using reaction-diffusion systems of morphogens, and one is often interested in emergent spatial and spatiotemporal patterns resulting from instabilities of a homogeneous equilibrium. In comparison to the well-known effects of how advection or manifold structure impacts the modes which may become unstable in such systems, I will present results on instabilities in heterogeneous systems, reaction-diffusion systems on evolving manifolds, as well as layered reaction-diffusion systems. These contexts require novel formulations of classical dispersion relations, and may have applications beyond developmental biology, such as in understanding niche formation for populations of animals in heterogeneous environments. These approaches also help close the vast gap between the simplistic theory of instability-driven pattern formation, and the messy reality of biological development, though there is still much work to be done in concretely demonstrating such a theory's applicability in real biological systems.
 

Cavity flow characteristics and applications to kidney stone removal

Dr. Jessica Williams


Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath . Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier-Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and PIV experiments. The clearance of an initial debris cloud is simulated via solutions to an advection-diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.

 

  • Industrial and Applied Mathematics Seminar
20 February 2020
16:00
to
17:30
Marie Elisabeth Rognes

Further Information: 

Short bio:

Marie E. Rognes is Chief Research Scientist and Research Professor in Scientific Computing and Numerical Analysis at Simula Research Laboratory, Oslo, Norway. She received her Ph.D from the University of Oslo in 2009 with an extended stay at the University of Minneapolis, Twin Cities, Minneapolis, US. She has been at Simula Research Laboratory since 2009, led its Department for Biomedical Computing from 2012-2016 and currently leads a number of research projects focusing on mathematical modelling and numerical methods for brain mechanics including an ERC Starting Grant in Mathematics. She won the 2015 Wilkinson Prize for Numerical Software, the 2018 Royal Norwegian Society of Sciences and Letters Prize for Young Researchers within the Natural Sciences, and was a Founding Member of the Young Academy of Norway.

Abstract

Your brain has its own waterscape: whether you are reading or sleeping, fluid flows around or through the brain tissue and clears waste in the process. These physiological processes are crucial for the well-being of the brain. In spite of their importance we understand them but little. Mathematics and numerics could play a crucial role in gaining new insight. Indeed, medical doctors express an urgent need for modeling of water transport through the brain, to overcome limitations in traditional techniques. Surprisingly little attention has been paid to the numerics of the brain’s waterscape however, and fundamental knowledge is missing. In this talk, I will discuss mathematical models and numerical methods for the brain's waterscape across scales - from viewing the brain as a poroelastic medium at the macroscale and zooming in to studying electrical, chemical and mechanical interactions between brain cells at the microscale.
 

  • Industrial and Applied Mathematics Seminar

Pages