Have you ever forgotten to replace the lid of the blender before beginning to puree your mango and passion-fruit smoothie? If you have, you'll have witnessed the catastrophic explosion of fruit and yoghurt flung haphazardly around the kitchen in an unpredictable manner. This is a consequence of the complicated and turbulent fluid dynamics present within the machine, the exact behaviour of which is unknown.

At the beginning of the twentieth century, some minor algebraic investigations grabbed the interest of a small group of American mathematicians.  The problems they worked on had little impact at the time, but they may nevertheless have had a subtle effect on the way in which mathematics has been taught over the past century.

90% of the world’s data have been generated in the last five years. A small fraction of these data is collected with the aim of validating specific hypotheses. These studies are led by the development of mechanistic models focussed on the causality of input-output relationships. However, the vast majority of the data are aimed at supporting statistical or correlation studies that bypass the need for causality and focus exclusively on prediction.

At the beginning of the 20th century, Jacques Hadamard gave the definition of well-posed problems, with a view to classifying “correct” mathematical models of physical phenomena. Three criteria should be fulfilled: a solution exists, that solution is unique, and it should depend continuously on the parameters.

Everyday life tells us that curved objects may have two stable states: a contact lens (or the spherical cap obtained by cutting a tennis ball, see picture) can be turned ‘inside out’. Heuristically, this is because the act of turning the object inside out keeps the central line of the object the same length (the centreline does not stretch significantly). Such deformations are called ‘isometries’ and the ‘turning inside out’ (or everted) isometry of a thin shell is often referred to as mirror buckling.

Cycling science is a lucrative and competitive industry in which small advantages are often the difference between winning and losing. For example, the 2017 Tour de France was won by a margin of less than one minute for a total race time of more than 86 hours. Such incremental improvements in performance come from a wide range of specialists, including sports scientists, engineers, and dieticians. How can mathematics assist us?

The generation of electricity from elevated water sources has been the subject of much scientific research over the last century. Typically, in order to produce cost-effective energy, hydropower stations require large flow rates of water across large pressure drops. Although there are many low head sites around the UK, including numerous river weirs and potential tidal sites, the pursuit of low head hydropower is often avoided because it is uneconomic.

Knots are widespread, universal physical structures, from shoelaces to Celtic decoration to the many variants familiar to sailors. They are often simple to construct and aesthetically appealing, yet remain topologically and mechanically quite complex.

Knots are also common in biopolymers such as DNA and proteins, with significant and often detrimental effects, and biological mechanisms also exist for 'unknotting'.

Oxford Mathematician John Allen, Professor Emeritus of Engineering Science, talks about his work on the electrohydrodynamic stability of a plasma-liquid interface. His collaborators are Joshua Holgate and Michael Coppins at Imperial College.

The brain is the most complicated organ of any animal, formed and sculpted over 500 million years of evolution. And the cerebral cortex is a critical component. This folded grey matter forms the outside of the brain, and is the seat of higher cognitive functions such as language, episodic memory and voluntary movement.

What does boiling water have in common with magnets and the horizon of black holes? They are all described by conformal field theories (CFTs)! We are used to physical systems that are invariant under translations and rotations. Imagine a system which is also invariant under scale transformations. Such a system is described by a conformal field theory. Remarkably, many physical systems admit such a description and conformal field theory is ubiquitous in our current theoretical understanding of nature.

Oxford Mathematicians Dominic Vella and Finn Box together with colleague Alfonso Castrejón-Pita from Engineering Science in Oxford and Maxime Inizan from MIT have won the annual video competition run by the UK Fluids Network. Here they describe their work and the film.

Americans drink an average of 3.1 cups of coffee per day (and mathematicans probably even more). When carrying a liquid, common sense says walk slowly and refrain from overfilling the container. But easier said than followed. Cue sloshing.

Oxford Mathematician Soumya Banerjee talks about his current work in progress.

"On warm summer days, fireflies mesmerise us with their glowing lights. They produce this cold light using a light-emitting molecule, the luciferin, and a complementary enzyme, luciferase. This process is known as bioluminescence.

Precise forecasting in the first few days of an infectious disease outbreak is challenging. However, Oxford Mathematical Biologist Robin Thompson and colleagues at Cambridge University have used mathematical modelling to show that for accurate epidemic prediction, it is necessary to develop and deploy diagnostic tests that can distinguish between hosts that are healthy and those that are infected but not yet showing symptoms. The data derived from these tests must then be integrated into epidemic models.

The investment decisions made by the construction sector have an obvious impact on the supply of housing. Furthermore, Local Planning Authorities play a fundamental role in shaping this supply via town planning and, in particular, by approving or rejecting planning applications submitted by developers. However, the role of these two factors, as well as their interaction, has so far been largely neglected in models of the housing market.

Over the last five decades, software and computation has grown to become integral to the scientific process, for both theory and experimentation. A recent survey of RCUK-funded research being undertaken in 15 Russell Group universities found that 92% of researchers used research software, 67% reported that it was fundamental to their research, and 56% said they developed their own software.

How can solar panels become cheaper? Part of the cost is in the production of silicon, which is manufactured in electrode-heated furnaces through a reaction between carbon and naturally occurring quartz rock. Making these furnaces more efficient could lead to a reduction in the financial cost of silicon and everything made from it, including computer chips, textiles, and solar panels. Greater efficiency also means reduced pollution.